add observation combinaison #1
142
package/Combine.py
Executable file
142
package/Combine.py
Executable file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding:utf-8 -*-
|
||||
# Project libraries
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def same_reduction(infiles):
|
||||
"""
|
||||
Test if infiles are pipeline productions with same parameters.
|
||||
"""
|
||||
from astropy.io.fits import open as fits_open
|
||||
|
||||
params = {"IQU": [], "TARGNAME": [], "BKG_SUB": [], "SAMPLING": [], "SMOOTHING": []}
|
||||
for file in infiles:
|
||||
with fits_open(file) as f:
|
||||
# test for presence of I, Q, U images
|
||||
datatype = []
|
||||
for hdu in f:
|
||||
try:
|
||||
datatype.append(hdu.header["datatype"])
|
||||
except KeyError:
|
||||
pass
|
||||
test_IQU = True
|
||||
for look in ["I_stokes", "Q_stokes", "U_stokes", "IQU_cov_matrix"]:
|
||||
test_IQU *= look in datatype
|
||||
params["IQU"].append(test_IQU)
|
||||
# look for information on reduction procedure
|
||||
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
|
||||
try:
|
||||
params[key].append(f[0].header[key])
|
||||
except KeyError:
|
||||
params[key].append("null")
|
||||
result = np.all(params["IQU"])
|
||||
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
|
||||
result *= np.unique(params[key]).size == 1
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def same_obs(infiles, data_folder):
|
||||
"""
|
||||
Group infiles into same observations.
|
||||
"""
|
||||
|
||||
import astropy.units as u
|
||||
from astropy.io.fits import getheader
|
||||
from astropy.table import Table
|
||||
from astropy.time import Time, TimeDelta
|
||||
|
||||
headers = [getheader("/".join([data_folder,file])) for file in infiles]
|
||||
files = {}
|
||||
files["PROPOSID"] = np.array([str(head["PROPOSID"]) for head in headers],dtype=str)
|
||||
files["ROOTNAME"] = np.array([head["ROOTNAME"].lower()+"_c0f.fits" for head in headers],dtype=str)
|
||||
files["EXPSTART"] = np.array([Time(head["EXPSTART"],format='mjd') for head in headers])
|
||||
products = Table(files)
|
||||
|
||||
new_infiles = []
|
||||
for pid in np.unique(products["PROPOSID"]):
|
||||
obs = products[products["PROPOSID"] == pid].copy()
|
||||
close_date = np.unique(
|
||||
[[np.abs(TimeDelta(obs["EXPSTART"][i].unix - date.unix, format="sec")) < 7.0 * u.d for i in range(len(obs))] for date in obs["EXPSTART"]], axis=0
|
||||
)
|
||||
if len(close_date) > 1:
|
||||
for date in close_date:
|
||||
new_infiles.append(list(products["ROOTNAME"][np.any([products["ROOTNAME"] == dataset for dataset in obs["ROOTNAME"][date]], axis=0)]))
|
||||
else:
|
||||
new_infiles.append(list(products["ROOTNAME"][products["PROPOSID"] == pid]))
|
||||
return new_infiles
|
||||
|
||||
|
||||
def combine_Stokes(infiles):
|
||||
"""
|
||||
Combine I, Q, U from different observations of a same object.
|
||||
"""
|
||||
print("not implemented yet")
|
||||
|
||||
return infiles
|
||||
|
||||
|
||||
def main(infiles, target=None, output_dir="./data/"):
|
||||
""" """
|
||||
if target is None:
|
||||
target = input("Target name:\n>")
|
||||
|
||||
if not same_reduction(infiles):
|
||||
print("NOT SAME REDUC")
|
||||
from FOC_reduction import main as FOC_reduction
|
||||
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
|
||||
data_folder = prod[0][0]
|
||||
infiles = [p[1] for p in prod]
|
||||
# Reduction parameters
|
||||
kwargs = {}
|
||||
# Background estimation
|
||||
kwargs["error_sub_type"] = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||
kwargs["subtract_error"] = 0.7
|
||||
|
||||
# Data binning
|
||||
kwargs["pxsize"] = 0.1
|
||||
kwargs["pxscale"] = "arcsec" # pixel, arcsec or full
|
||||
|
||||
# Smoothing
|
||||
kwargs["smoothing_function"] = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
kwargs["smoothing_FWHM"] = 0.2 # If None, no smoothing is done
|
||||
kwargs["smoothing_scale"] = "arcsec" # pixel or arcsec
|
||||
|
||||
# Polarization map output
|
||||
kwargs["SNRp_cut"] = 3.0 # P measurments with SNR>3
|
||||
kwargs["SNRi_cut"] = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
kwargs["flux_lim"] = 1e-19, 3e-17 # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
||||
kwargs["scale_vec"] = 5
|
||||
kwargs["step_vec"] = (
|
||||
1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||
)
|
||||
grouped_infiles = same_obs(infiles, data_folder)
|
||||
print(grouped_infiles)
|
||||
|
||||
new_infiles = []
|
||||
for i,group in enumerate(grouped_infiles):
|
||||
new_infiles.append(FOC_reduction(target=target+"-"+str(i+1), infiles=["/".join([data_folder,file]) for file in group], interactive=True, **kwargs))
|
||||
|
||||
combined_Stokes = combine_Stokes(new_infiles)
|
||||
|
||||
else:
|
||||
print("SAME REDUC")
|
||||
combined_Stokes = combine_Stokes(infiles)
|
||||
|
||||
return combined_Stokes
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="Combine different observations of a single object")
|
||||
parser.add_argument("-t", "--target", metavar="targetname", required=False, help="the name of the target", type=str, default=None)
|
||||
parser.add_argument("-f", "--files", metavar="path", required=False, nargs="*", help="the full or relative path to the data products", default=None)
|
||||
parser.add_argument(
|
||||
"-o", "--output_dir", metavar="directory_path", required=False, help="output directory path for the data products", type=str, default="./data"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
exitcode = main(target=args.target, infiles=args.files, output_dir=args.output_dir)
|
||||
print("Written to: ", exitcode)
|
||||
@@ -17,7 +17,7 @@ from lib.utils import princ_angle, sci_not
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
|
||||
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False):
|
||||
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False, **kwargs):
|
||||
# Reduction parameters
|
||||
# Deconvolution
|
||||
deconvolve = False
|
||||
@@ -36,13 +36,12 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
|
||||
# Background estimation
|
||||
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||
subtract_error = 1.0
|
||||
subtract_error = 0.7
|
||||
display_bkg = False
|
||||
|
||||
# Data binning
|
||||
rebin = True
|
||||
pxsize = 2
|
||||
px_scale = "px" # pixel, arcsec or full
|
||||
pxsize = 0.1
|
||||
pxscale = "arcsec" # pixel, arcsec or full
|
||||
rebin_operation = "sum" # sum or average
|
||||
|
||||
# Alignement
|
||||
@@ -55,23 +54,45 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
|
||||
# Smoothing
|
||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
smoothing_FWHM = 1.5 # If None, no smoothing is done
|
||||
smoothing_scale = "px" # pixel or arcsec
|
||||
smoothing_FWHM = 0.2 # If None, no smoothing is done
|
||||
smoothing_scale = "arcsec" # pixel or arcsec
|
||||
|
||||
# Rotation
|
||||
rotate_data = False # rotation to North convention can give erroneous results
|
||||
rotate_stokes = True
|
||||
rotate_North = True
|
||||
|
||||
# Polarization map output
|
||||
SNRp_cut = 3.0 # P measurments with SNR>3
|
||||
SNRi_cut = 3.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
||||
vec_scale = 3
|
||||
SNRi_cut = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
flux_lim = 1e-19, 3e-17 # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
||||
scale_vec = 5
|
||||
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||
|
||||
# Pipeline start
|
||||
# Step 0:
|
||||
# Get parameters from kwargs
|
||||
for key, value in [
|
||||
["error_sub_type", error_sub_type],
|
||||
["subtract_error", subtract_error],
|
||||
["pxsize", pxsize],
|
||||
["pxscale", pxscale],
|
||||
["smoothing_function", smoothing_function],
|
||||
["smoothing_FWHM", smoothing_FWHM],
|
||||
["smoothing_scale", smoothing_scale],
|
||||
["SNRp_cut", SNRp_cut],
|
||||
["SNRi_cut", SNRi_cut],
|
||||
["flux_lim", flux_lim],
|
||||
["scale_vec", scale_vec],
|
||||
["step_vec", step_vec],
|
||||
]:
|
||||
try:
|
||||
value = kwargs[key]
|
||||
except KeyError:
|
||||
pass
|
||||
rebin = True if pxsize is not None else False
|
||||
|
||||
# Step 1:
|
||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||
outfiles = []
|
||||
if infiles is not None:
|
||||
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
|
||||
obs_dir = "/".join(infiles[0].split("/")[:-1])
|
||||
@@ -85,7 +106,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
target, products = retrieve_products(target, proposal_id, output_dir=output_dir)
|
||||
prod = products.pop()
|
||||
for prods in products:
|
||||
main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir, crop=crop, interactive=interactive)
|
||||
outfiles.append(main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir, crop=crop, interactive=interactive)[0])
|
||||
data_folder = prod[0][0]
|
||||
try:
|
||||
plots_folder = data_folder.replace("data", "plots")
|
||||
@@ -99,8 +120,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
figname = "_".join([target, "FOC"])
|
||||
figtype = ""
|
||||
if rebin:
|
||||
if px_scale not in ["full"]:
|
||||
figtype = "".join(["b", "{0:.2f}".format(pxsize), px_scale]) # additionnal informations
|
||||
if pxscale not in ["full"]:
|
||||
figtype = "".join(["b", "{0:.2f}".format(pxsize), pxscale]) # additionnal informations
|
||||
else:
|
||||
figtype = "full"
|
||||
if smoothing_FWHM is not None:
|
||||
@@ -137,9 +158,34 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
return_background=True,
|
||||
)
|
||||
|
||||
# Rotate data to have same orientation
|
||||
rotate_data = np.unique([float(head["ORIENTAT"]) for head in headers]).size != 1
|
||||
if rotate_data:
|
||||
ang = np.mean([head["ORIENTAT"] for head in headers])
|
||||
for head in headers:
|
||||
head["ORIENTAT"] -= ang
|
||||
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers)
|
||||
if display_data:
|
||||
proj_plots.plot_obs(
|
||||
data_array,
|
||||
headers,
|
||||
savename="_".join([figname, "rotate_data"]),
|
||||
plots_folder=plots_folder,
|
||||
norm=LogNorm(
|
||||
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||
),
|
||||
)
|
||||
|
||||
# Align and rescale images with oversampling.
|
||||
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
|
||||
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True
|
||||
data_array,
|
||||
headers,
|
||||
error_array=error_array,
|
||||
data_mask=data_mask,
|
||||
background=background,
|
||||
upsample_factor=10,
|
||||
ref_center=align_center,
|
||||
return_shifts=True,
|
||||
)
|
||||
|
||||
if display_align:
|
||||
@@ -155,17 +201,11 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
# Rebin data to desired pixel size.
|
||||
if rebin:
|
||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
||||
data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask
|
||||
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
||||
)
|
||||
|
||||
# Rotate data to have North up
|
||||
if rotate_data:
|
||||
data_mask = np.ones(data_array.shape[1:]).astype(bool)
|
||||
alpha = headers[0]["orientat"]
|
||||
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -alpha)
|
||||
|
||||
# Plot array for checking output
|
||||
if display_data and px_scale.lower() not in ["full", "integrate"]:
|
||||
if display_data and pxscale.lower() not in ["full", "integrate"]:
|
||||
proj_plots.plot_obs(
|
||||
data_array,
|
||||
headers,
|
||||
@@ -193,29 +233,29 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||
)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
||||
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
|
||||
)
|
||||
|
||||
# Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate_stokes:
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None
|
||||
if rotate_North:
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
||||
)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None)
|
||||
|
||||
# Compute polarimetric parameters (polarization degree and angle).
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
|
||||
|
||||
# Step 4:
|
||||
# Save image to FITS.
|
||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||
Stokes_test = proj_fits.save_Stokes(
|
||||
Stokes_hdul = proj_fits.save_Stokes(
|
||||
I_stokes,
|
||||
Q_stokes,
|
||||
U_stokes,
|
||||
@@ -227,7 +267,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
PA,
|
||||
s_PA,
|
||||
s_PA_P,
|
||||
headers,
|
||||
header_stokes,
|
||||
data_mask,
|
||||
figname,
|
||||
data_folder=data_folder,
|
||||
@@ -238,150 +278,152 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
# crop to desired region of interest (roi)
|
||||
if crop:
|
||||
figname += "_crop"
|
||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test), norm=LogNorm())
|
||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
||||
stokescrop.crop()
|
||||
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
||||
Stokes_test, headers = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||
Stokes_hdul, headers = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||
|
||||
data_mask = Stokes_test["data_mask"].data.astype(bool)
|
||||
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
||||
print(
|
||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
headers[0]["photplam"],
|
||||
header_stokes["photplam"],
|
||||
*sci_not(
|
||||
Stokes_test[0].data[data_mask].sum() * headers[0]["photflam"],
|
||||
np.sqrt(Stokes_test[3].data[0, 0][data_mask].sum()) * headers[0]["photflam"],
|
||||
Stokes_hdul[0].data[data_mask].sum() * header_stokes["photflam"],
|
||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["photflam"],
|
||||
2,
|
||||
out=int,
|
||||
),
|
||||
)
|
||||
)
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]["p_int"] * 100.0, np.ceil(headers[0]["p_int_err"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(headers[0]["pa_int"]), princ_angle(np.ceil(headers[0]["pa_int_err"] * 10.0) / 10.0)))
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||
# Background values
|
||||
print(
|
||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
headers[0]["photplam"], *sci_not(I_bkg[0, 0] * headers[0]["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * headers[0]["photflam"], 2, out=int)
|
||||
header_stokes["photplam"], *sci_not(I_bkg[0, 0] * header_stokes["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["photflam"], 2, out=int)
|
||||
)
|
||||
)
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||
if px_scale.lower() not in ["full", "integrate"] and not interactive:
|
||||
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname]),
|
||||
plots_folder=plots_folder,
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "I"]),
|
||||
plots_folder=plots_folder,
|
||||
display="Intensity",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "P_flux"]),
|
||||
plots_folder=plots_folder,
|
||||
display="Pol_Flux",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "P"]),
|
||||
plots_folder=plots_folder,
|
||||
display="Pol_deg",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "PA"]),
|
||||
plots_folder=plots_folder,
|
||||
display="Pol_ang",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "I_err"]),
|
||||
plots_folder=plots_folder,
|
||||
display="I_err",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "P_err"]),
|
||||
plots_folder=plots_folder,
|
||||
display="Pol_deg_err",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "SNRi"]),
|
||||
plots_folder=plots_folder,
|
||||
display="SNRi",
|
||||
)
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test),
|
||||
deepcopy(Stokes_hdul),
|
||||
data_mask,
|
||||
SNRp_cut=SNRp_cut,
|
||||
SNRi_cut=SNRi_cut,
|
||||
flux_lim=flux_lim,
|
||||
step_vec=step_vec,
|
||||
vec_scale=vec_scale,
|
||||
scale_vec=scale_vec,
|
||||
savename="_".join([figname, "SNRp"]),
|
||||
plots_folder=plots_folder,
|
||||
display="SNRp",
|
||||
)
|
||||
elif not interactive:
|
||||
proj_plots.polarization_map(
|
||||
deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=figname, plots_folder=plots_folder, display="integrate"
|
||||
deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=figname, plots_folder=plots_folder, display="integrate"
|
||||
)
|
||||
elif px_scale.lower() not in ["full", "integrate"]:
|
||||
proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
elif pxscale.lower() not in ["full", "integrate"]:
|
||||
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
|
||||
return 0
|
||||
outfiles.append(Stokes_hdul[0].header["FILENAME"])
|
||||
|
||||
return outfiles
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -400,4 +442,4 @@ if __name__ == "__main__":
|
||||
exitcode = main(
|
||||
target=args.target, proposal_id=args.proposal_id, infiles=args.files, output_dir=args.output_dir, crop=args.crop, interactive=args.interactive
|
||||
)
|
||||
print("Finished with ExitCode: ", exitcode)
|
||||
print("Written to: ", exitcode)
|
||||
|
||||
@@ -1,2 +1,3 @@
|
||||
from . import lib
|
||||
from . import src
|
||||
from . import FOC_reduction
|
||||
|
||||
@@ -73,7 +73,7 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, binning=Non
|
||||
|
||||
if histograms is not None:
|
||||
filt_obs = {"POL0": 0, "POL60": 0, "POL120": 0}
|
||||
fig_h, ax_h = plt.subplots(figsize=(10, 6), constrained_layout=True)
|
||||
fig_h, ax_h = plt.subplots(figsize=(10, 8), constrained_layout=True)
|
||||
for i, (hist, bins) in enumerate(zip(histograms, binning)):
|
||||
filt_obs[headers[i]["filtnam1"]] += 1
|
||||
ax_h.plot(
|
||||
|
||||
@@ -76,7 +76,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
|
||||
# force WCS for POL60 to have same pixel size as POL0 and POL120
|
||||
is_pol60 = np.array([head["filtnam1"].lower() == "pol60" for head in headers], dtype=bool)
|
||||
cdelt = np.round(np.array([WCS(head).wcs.cdelt[:2] for head in headers]), 14)
|
||||
cdelt = np.round(np.array([WCS(head).wcs.cdelt[:2] for head in headers]), 10)
|
||||
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
|
||||
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
|
||||
raise ValueError("Not all images have same pixel size")
|
||||
@@ -93,7 +93,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
|
||||
|
||||
def save_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="", return_hdul=False
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, filename, data_folder="", return_hdul=False
|
||||
):
|
||||
"""
|
||||
Save computed polarimetry parameters to a single fits file,
|
||||
@@ -130,9 +130,8 @@ def save_Stokes(
|
||||
Only returned if return_hdul is True.
|
||||
"""
|
||||
# Create new WCS object given the modified images
|
||||
ref_header = headers[0]
|
||||
exp_tot = np.array([header["exptime"] for header in headers]).sum()
|
||||
new_wcs = WCS(ref_header).deepcopy()
|
||||
exp_tot = header_stokes['exptime']
|
||||
new_wcs = WCS(header_stokes).deepcopy()
|
||||
|
||||
if data_mask.shape != (1, 1):
|
||||
vertex = clean_ROI(data_mask)
|
||||
@@ -141,19 +140,23 @@ def save_Stokes(
|
||||
new_wcs.wcs.crpix = np.array(new_wcs.wcs.crpix) - vertex[0::-2]
|
||||
|
||||
header = new_wcs.to_header()
|
||||
header["telescop"] = (ref_header["telescop"] if "TELESCOP" in list(ref_header.keys()) else "HST", "telescope used to acquire data")
|
||||
header["instrume"] = (ref_header["instrume"] if "INSTRUME" in list(ref_header.keys()) else "FOC", "identifier for instrument used to acuire data")
|
||||
header["photplam"] = (ref_header["photplam"], "Pivot Wavelength")
|
||||
header["photflam"] = (ref_header["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
|
||||
header["exptot"] = (exp_tot, "Total exposure time in sec")
|
||||
header["proposid"] = (ref_header["proposid"], "PEP proposal identifier for observation")
|
||||
header["targname"] = (ref_header["targname"], "Target name")
|
||||
header["orientat"] = (ref_header["orientat"], "Angle between North and the y-axis of the image")
|
||||
header["filename"] = (filename, "Original filename")
|
||||
header["P_int"] = (ref_header["P_int"], "Integrated polarization degree")
|
||||
header["P_int_err"] = (ref_header["P_int_err"], "Integrated polarization degree error")
|
||||
header["PA_int"] = (ref_header["PA_int"], "Integrated polarization angle")
|
||||
header["PA_int_err"] = (ref_header["PA_int_err"], "Integrated polarization angle error")
|
||||
header["TELESCOP"] = (header_stokes["telescop"] if "TELESCOP" in list(header_stokes.keys()) else "HST", "telescope used to acquire data")
|
||||
header["INSTRUME"] = (header_stokes["instrume"] if "INSTRUME" in list(header_stokes.keys()) else "FOC", "identifier for instrument used to acuire data")
|
||||
header["PHOTPLAM"] = (header_stokes["photplam"], "Pivot Wavelength")
|
||||
header["PHOTFLAM"] = (header_stokes["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
|
||||
header["EXPTOT"] = (exp_tot, "Total exposure time in sec")
|
||||
header["PROPOSID"] = (header_stokes["proposid"], "PEP proposal identifier for observation")
|
||||
header["TARGNAME"] = (header_stokes["targname"], "Target name")
|
||||
header["ORIENTAT"] = (np.arccos(new_wcs.wcs.pc[0, 0]) * 180.0 / np.pi, "Angle between North and the y-axis of the image")
|
||||
header["FILENAME"] = (filename, "Original filename")
|
||||
header["BKG_TYPE"] = (header_stokes["BKG_TYPE"], "Bkg estimation method used during reduction")
|
||||
header["BKG_SUB"] = (header_stokes["BKG_SUB"], "Amount of bkg subtracted from images")
|
||||
header["SMOOTH"] = (header_stokes["SMOOTH"], "Smoothing method used during reduction")
|
||||
header["SAMPLING"] = (header_stokes["SAMPLING"], "Resampling performed during reduction")
|
||||
header["P_INT"] = (header_stokes["P_int"], "Integrated polarization degree")
|
||||
header["sP_INT"] = (header_stokes["sP_int"], "Integrated polarization degree error")
|
||||
header["PA_INT"] = (header_stokes["PA_int"], "Integrated polarization angle")
|
||||
header["sPA_INT"] = (header_stokes["sPA_int"], "Integrated polarization angle error")
|
||||
|
||||
# Crop Data to mask
|
||||
if data_mask.shape != (1, 1):
|
||||
|
||||
@@ -218,7 +218,7 @@ def polarization_map(
|
||||
SNRi_cut=3.0,
|
||||
flux_lim=None,
|
||||
step_vec=1,
|
||||
vec_scale=2.0,
|
||||
scale_vec=2.0,
|
||||
savename=None,
|
||||
plots_folder="",
|
||||
display="default",
|
||||
@@ -250,9 +250,9 @@ def polarization_map(
|
||||
Number of steps between each displayed polarization vector.
|
||||
If step_vec = 2, every other vector will be displayed.
|
||||
Defaults to 1
|
||||
vec_scale : float, optional
|
||||
scale_vec : float, optional
|
||||
Pixel length of displayed 100% polarization vector.
|
||||
If vec_scale = 2, a vector of 50% polarization will be 1 pixel wide.
|
||||
If scale_vec = 2, a vector of 50% polarization will be 1 pixel wide.
|
||||
Defaults to 2.
|
||||
savename : str, optional
|
||||
Name of the figure the map should be saved to. If None, the map won't
|
||||
@@ -428,9 +428,9 @@ def polarization_map(
|
||||
I_diluted_err = np.sqrt(np.sum(stk_cov[0, 0][data_mask]))
|
||||
|
||||
P_diluted = Stokes[0].header["P_int"]
|
||||
P_diluted_err = Stokes[0].header["P_int_err"]
|
||||
P_diluted_err = Stokes[0].header["sP_int"]
|
||||
PA_diluted = Stokes[0].header["PA_int"]
|
||||
PA_diluted_err = Stokes[0].header["PA_int_err"]
|
||||
PA_diluted_err = Stokes[0].header["sPA_int"]
|
||||
|
||||
plt.rcParams.update({"font.size": 12})
|
||||
px_size = wcs.wcs.get_cdelt()[0] * 3600.0
|
||||
@@ -457,7 +457,7 @@ def polarization_map(
|
||||
if step_vec == 0:
|
||||
poldata[np.isfinite(poldata)] = 1.0 / 2.0
|
||||
step_vec = 1
|
||||
vec_scale = 2.0
|
||||
scale_vec = 2.0
|
||||
X, Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||
U, V = poldata * np.cos(np.pi / 2.0 + pangdata * np.pi / 180.0), poldata * np.sin(np.pi / 2.0 + pangdata * np.pi / 180.0)
|
||||
ax.quiver(
|
||||
@@ -467,7 +467,7 @@ def polarization_map(
|
||||
V[::step_vec, ::step_vec],
|
||||
units="xy",
|
||||
angles="uv",
|
||||
scale=1.0 / vec_scale,
|
||||
scale=1.0 / scale_vec,
|
||||
scale_units="xy",
|
||||
pivot="mid",
|
||||
headwidth=0.0,
|
||||
@@ -478,7 +478,7 @@ def polarization_map(
|
||||
color="w",
|
||||
edgecolor="k",
|
||||
)
|
||||
pol_sc = AnchoredSizeBar(ax.transData, vec_scale, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color="w")
|
||||
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color="w")
|
||||
|
||||
ax.add_artist(pol_sc)
|
||||
ax.add_artist(px_sc)
|
||||
@@ -839,7 +839,7 @@ class overplot_radio(align_maps):
|
||||
Inherit from class align_maps in order to get the same WCS on both maps.
|
||||
"""
|
||||
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, vec_scale=2, savename=None, **kwargs):
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, scale_vec=2, savename=None, **kwargs):
|
||||
self.Stokes_UV = self.map
|
||||
self.wcs_UV = self.map_wcs
|
||||
# Get Data
|
||||
@@ -915,11 +915,11 @@ class overplot_radio(align_maps):
|
||||
)
|
||||
|
||||
# Display full size polarization vectors
|
||||
if vec_scale is None:
|
||||
self.vec_scale = 2.0
|
||||
if scale_vec is None:
|
||||
self.scale_vec = 2.0
|
||||
pol[np.isfinite(pol)] = 1.0 / 2.0
|
||||
else:
|
||||
self.vec_scale = vec_scale
|
||||
self.scale_vec = scale_vec
|
||||
step_vec = 1
|
||||
self.X, self.Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||
self.U, self.V = pol * np.cos(np.pi / 2.0 + pang * np.pi / 180.0), pol * np.sin(np.pi / 2.0 + pang * np.pi / 180.0)
|
||||
@@ -930,7 +930,7 @@ class overplot_radio(align_maps):
|
||||
self.V[::step_vec, ::step_vec],
|
||||
units="xy",
|
||||
angles="uv",
|
||||
scale=1.0 / self.vec_scale,
|
||||
scale=1.0 / self.scale_vec,
|
||||
scale_units="xy",
|
||||
pivot="mid",
|
||||
headwidth=0.0,
|
||||
@@ -998,7 +998,7 @@ class overplot_radio(align_maps):
|
||||
self.ax_overplot.add_artist(north_dir)
|
||||
pol_sc = AnchoredSizeBar(
|
||||
self.ax_overplot.transData,
|
||||
self.vec_scale,
|
||||
self.scale_vec,
|
||||
r"$P$= 100%",
|
||||
4,
|
||||
pad=0.5,
|
||||
@@ -1046,7 +1046,7 @@ class overplot_chandra(align_maps):
|
||||
Inherit from class align_maps in order to get the same WCS on both maps.
|
||||
"""
|
||||
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, vec_scale=2, zoom=1, savename=None, **kwargs):
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, scale_vec=2, zoom=1, savename=None, **kwargs):
|
||||
self.Stokes_UV = self.map
|
||||
self.wcs_UV = self.map_wcs
|
||||
# Get Data
|
||||
@@ -1121,11 +1121,11 @@ class overplot_chandra(align_maps):
|
||||
)
|
||||
|
||||
# Display full size polarization vectors
|
||||
if vec_scale is None:
|
||||
self.vec_scale = 2.0
|
||||
if scale_vec is None:
|
||||
self.scale_vec = 2.0
|
||||
pol[np.isfinite(pol)] = 1.0 / 2.0
|
||||
else:
|
||||
self.vec_scale = vec_scale
|
||||
self.scale_vec = scale_vec
|
||||
step_vec = 1
|
||||
self.X, self.Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||
self.U, self.V = pol * np.cos(np.pi / 2.0 + pang * np.pi / 180.0), pol * np.sin(np.pi / 2.0 + pang * np.pi / 180.0)
|
||||
@@ -1136,7 +1136,7 @@ class overplot_chandra(align_maps):
|
||||
self.V[::step_vec, ::step_vec],
|
||||
units="xy",
|
||||
angles="uv",
|
||||
scale=1.0 / self.vec_scale,
|
||||
scale=1.0 / self.scale_vec,
|
||||
scale_units="xy",
|
||||
pivot="mid",
|
||||
headwidth=0.0,
|
||||
@@ -1200,7 +1200,7 @@ class overplot_chandra(align_maps):
|
||||
self.ax_overplot.add_artist(north_dir)
|
||||
pol_sc = AnchoredSizeBar(
|
||||
self.ax_overplot.transData,
|
||||
self.vec_scale,
|
||||
self.scale_vec,
|
||||
r"$P$= 100%",
|
||||
4,
|
||||
pad=0.5,
|
||||
@@ -1245,7 +1245,7 @@ class overplot_pol(align_maps):
|
||||
Inherit from class align_maps in order to get the same WCS on both maps.
|
||||
"""
|
||||
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, vec_scale=2.0, savename=None, **kwargs):
|
||||
def overplot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, scale_vec=2.0, savename=None, **kwargs):
|
||||
self.Stokes_UV = self.map
|
||||
self.wcs_UV = self.map_wcs
|
||||
# Get Data
|
||||
@@ -1323,11 +1323,11 @@ class overplot_pol(align_maps):
|
||||
)
|
||||
|
||||
# Display full size polarization vectors
|
||||
if vec_scale is None:
|
||||
self.vec_scale = 2.0
|
||||
if scale_vec is None:
|
||||
self.scale_vec = 2.0
|
||||
pol[np.isfinite(pol)] = 1.0 / 2.0
|
||||
else:
|
||||
self.vec_scale = vec_scale
|
||||
self.scale_vec = scale_vec
|
||||
step_vec = 1
|
||||
px_scale = np.abs(self.wcs_UV.wcs.get_cdelt()[0] / self.other_wcs.wcs.get_cdelt()[0])
|
||||
self.X, self.Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||
@@ -1339,7 +1339,7 @@ class overplot_pol(align_maps):
|
||||
self.V[::step_vec, ::step_vec],
|
||||
units="xy",
|
||||
angles="uv",
|
||||
scale=px_scale / self.vec_scale,
|
||||
scale=px_scale / self.scale_vec,
|
||||
scale_units="xy",
|
||||
pivot="mid",
|
||||
headwidth=0.0,
|
||||
@@ -1395,7 +1395,7 @@ class overplot_pol(align_maps):
|
||||
self.ax_overplot.add_artist(north_dir)
|
||||
pol_sc = AnchoredSizeBar(
|
||||
self.ax_overplot.transData,
|
||||
self.vec_scale / px_scale,
|
||||
self.scale_vec / px_scale,
|
||||
r"$P$= 100%",
|
||||
4,
|
||||
pad=0.5,
|
||||
@@ -1435,10 +1435,10 @@ class overplot_pol(align_maps):
|
||||
|
||||
self.fig_overplot.canvas.draw()
|
||||
|
||||
def plot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, vec_scale=2.0, savename=None, **kwargs) -> None:
|
||||
def plot(self, levels=None, SNRp_cut=3.0, SNRi_cut=3.0, scale_vec=2.0, savename=None, **kwargs) -> None:
|
||||
while not self.aligned:
|
||||
self.align()
|
||||
self.overplot(levels=levels, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, vec_scale=vec_scale, savename=savename, **kwargs)
|
||||
self.overplot(levels=levels, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, scale_vec=scale_vec, savename=savename, **kwargs)
|
||||
plt.show(block=True)
|
||||
|
||||
def add_vector(self, position="center", pol_deg=1.0, pol_ang=0.0, **kwargs):
|
||||
@@ -1448,7 +1448,7 @@ class overplot_pol(align_maps):
|
||||
position = self.other_wcs.world_to_pixel(position)
|
||||
|
||||
u, v = pol_deg * np.cos(np.radians(pol_ang) + np.pi / 2.0), pol_deg * np.sin(np.radians(pol_ang) + np.pi / 2.0)
|
||||
for key, value in [["scale", [["scale", self.vec_scale]]], ["width", [["width", 0.1]]], ["color", [["color", "k"]]]]:
|
||||
for key, value in [["scale", [["scale", self.scale_vec]]], ["width", [["width", 0.1]]], ["color", [["color", "k"]]]]:
|
||||
try:
|
||||
_ = kwargs[key]
|
||||
except KeyError:
|
||||
@@ -1937,9 +1937,9 @@ class crop_Stokes(crop_map):
|
||||
|
||||
for dataset in self.hdul_crop:
|
||||
dataset.header["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
dataset.header["P_int_err"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
dataset.header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
dataset.header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
dataset.header["PA_int_err"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
dataset.header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
self.fig.canvas.draw_idle()
|
||||
|
||||
@property
|
||||
@@ -3043,9 +3043,9 @@ class pol_map(object):
|
||||
I_reg = self.I.sum()
|
||||
I_reg_err = np.sqrt(np.sum(s_I**2))
|
||||
P_reg = self.Stokes[0].header["P_int"]
|
||||
P_reg_err = self.Stokes[0].header["P_int_err"]
|
||||
P_reg_err = self.Stokes[0].header["sP_int"]
|
||||
PA_reg = self.Stokes[0].header["PA_int"]
|
||||
PA_reg_err = self.Stokes[0].header["PA_int_err"]
|
||||
PA_reg_err = self.Stokes[0].header["sPA_int"]
|
||||
|
||||
s_I = np.sqrt(self.IQU_cov[0, 0])
|
||||
s_Q = np.sqrt(self.IQU_cov[1, 1])
|
||||
|
||||
@@ -53,7 +53,7 @@ from scipy.ndimage import shift as sc_shift
|
||||
from scipy.signal import fftconvolve
|
||||
|
||||
from .background import bkg_fit, bkg_hist, bkg_mini
|
||||
from .convex_hull import clean_ROI, image_hull
|
||||
from .convex_hull import image_hull
|
||||
from .cross_correlation import phase_cross_correlation
|
||||
from .deconvolve import deconvolve_im, gaussian2d, gaussian_psf, zeropad
|
||||
from .plots import plot_obs
|
||||
@@ -433,18 +433,7 @@ def deconvolve_array(data_array, headers, psf="gaussian", FWHM=1.0, scale="px",
|
||||
return deconv_array
|
||||
|
||||
|
||||
def get_error(
|
||||
data_array,
|
||||
headers,
|
||||
error_array=None,
|
||||
data_mask=None,
|
||||
sub_type=None,
|
||||
subtract_error=True,
|
||||
display=False,
|
||||
savename=None,
|
||||
plots_folder="",
|
||||
return_background=False,
|
||||
):
|
||||
def get_error(data_array, headers, error_array=None, data_mask=None, sub_type=None, subtract_error=0.5, display=False, savename=None, plots_folder="", return_background=False):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
@@ -532,22 +521,30 @@ def get_error(
|
||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram ", str(int(subtract_error>0.))
|
||||
elif isinstance(sub_type, str):
|
||||
if sub_type.lower() in ["auto"]:
|
||||
n_data_array, c_error_bkg, headers, background = bkg_fit(
|
||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
else:
|
||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
elif isinstance(sub_type, tuple):
|
||||
n_data_array, c_error_bkg, headers, background = bkg_mini(
|
||||
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
else:
|
||||
print("Warning: Invalid subtype.")
|
||||
|
||||
for header in headers:
|
||||
header["BKG_TYPE"] = (sub_type,"Bkg estimation method used during reduction")
|
||||
header["BKG_SUB"] = (subtract_error,"Amount of bkg subtracted from images")
|
||||
|
||||
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
|
||||
n_error_array = np.sqrt(err_wav**2 + err_psf**2 + err_flat**2 + c_error_bkg**2)
|
||||
|
||||
@@ -557,7 +554,7 @@ def get_error(
|
||||
return n_data_array, n_error_array, headers
|
||||
|
||||
|
||||
def rebin_array(data_array, error_array, headers, pxsize, scale, operation="sum", data_mask=None):
|
||||
def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operation="sum", data_mask=None):
|
||||
"""
|
||||
Homogeneously rebin a data array to get a new pixel size equal to pxsize
|
||||
where pxsize is given in arcsec.
|
||||
@@ -613,65 +610,62 @@ def rebin_array(data_array, error_array, headers, pxsize, scale, operation="sum"
|
||||
Dxy = np.array([1.0, 1.0])
|
||||
|
||||
# Routine for the FOC instrument
|
||||
if instr == "FOC":
|
||||
# HST_aper = 2400.0 # HST aperture in mm
|
||||
Dxy_arr = np.ones((data_array.shape[0], 2))
|
||||
for i, (image, error, header) in enumerate(list(zip(data_array, error_array, headers))):
|
||||
# Get current pixel size
|
||||
w = WCS(header).celestial.deepcopy()
|
||||
new_header = deepcopy(header)
|
||||
Dxy_arr = np.ones((data_array.shape[0], 2))
|
||||
for i, (image, error, header) in enumerate(list(zip(data_array, error_array, headers))):
|
||||
# Get current pixel size
|
||||
w = WCS(header).celestial.deepcopy()
|
||||
new_header = deepcopy(header)
|
||||
|
||||
# Compute binning ratio
|
||||
if scale.lower() in ["px", "pixel"]:
|
||||
Dxy_arr[i] = np.array(
|
||||
[
|
||||
pxsize,
|
||||
]
|
||||
* 2
|
||||
)
|
||||
elif scale.lower() in ["arcsec", "arcseconds"]:
|
||||
Dxy_arr[i] = np.array(pxsize / np.abs(w.wcs.cdelt) / 3600.0)
|
||||
elif scale.lower() in ["full", "integrate"]:
|
||||
Dxy_arr[i] = image.shape
|
||||
else:
|
||||
raise ValueError("'{0:s}' invalid scale for binning.".format(scale))
|
||||
new_shape = np.ceil(min(image.shape / Dxy_arr, key=lambda x: x[0] + x[1])).astype(int)
|
||||
# Compute binning ratio
|
||||
if scale.lower() in ["px", "pixel"]:
|
||||
Dxy_arr[i] = np.array( [ pxsize, ] * 2)
|
||||
scale = "px"
|
||||
elif scale.lower() in ["arcsec", "arcseconds"]:
|
||||
Dxy_arr[i] = np.array(pxsize / np.abs(w.wcs.cdelt) / 3600.0)
|
||||
scale = "arcsec"
|
||||
elif scale.lower() in ["full", "integrate"]:
|
||||
Dxy_arr[i] = image.shape
|
||||
pxsize, scale = "", "full"
|
||||
else:
|
||||
raise ValueError("'{0:s}' invalid scale for binning.".format(scale))
|
||||
new_shape = np.ceil(min(image.shape / Dxy_arr, key=lambda x: x[0] + x[1])).astype(int)
|
||||
|
||||
for i, (image, error, header) in enumerate(list(zip(data_array, error_array, headers))):
|
||||
# Get current pixel size
|
||||
w = WCS(header).celestial.deepcopy()
|
||||
new_header = deepcopy(header)
|
||||
for i, (image, error, header) in enumerate(list(zip(data_array, error_array, headers))):
|
||||
# Get current pixel size
|
||||
w = WCS(header).celestial.deepcopy()
|
||||
new_header = deepcopy(header)
|
||||
|
||||
Dxy = image.shape / new_shape
|
||||
if (Dxy < 1.0).any():
|
||||
raise ValueError("Requested pixel size is below resolution.")
|
||||
Dxy = image.shape / new_shape
|
||||
if (Dxy < 1.0).any():
|
||||
raise ValueError("Requested pixel size is below resolution.")
|
||||
|
||||
# Rebin data
|
||||
rebin_data = bin_ndarray(image, new_shape=new_shape, operation=operation)
|
||||
rebinned_data.append(rebin_data)
|
||||
# Rebin data
|
||||
rebin_data = bin_ndarray(image, new_shape=new_shape, operation=operation)
|
||||
rebinned_data.append(rebin_data)
|
||||
|
||||
# Propagate error
|
||||
rms_image = np.sqrt(bin_ndarray(image**2, new_shape=new_shape, operation="average"))
|
||||
# sum_image = bin_ndarray(image, new_shape=new_shape, operation="sum")
|
||||
# mask = sum_image > 0.0
|
||||
new_error = np.zeros(rms_image.shape)
|
||||
if operation.lower() in ["mean", "average", "avg"]:
|
||||
new_error = np.sqrt(bin_ndarray(error**2, new_shape=new_shape, operation="average"))
|
||||
else:
|
||||
new_error = np.sqrt(bin_ndarray(error**2, new_shape=new_shape, operation="sum"))
|
||||
rebinned_error.append(np.sqrt(rms_image**2 + new_error**2))
|
||||
# Propagate error
|
||||
rms_image = np.sqrt(bin_ndarray(image**2, new_shape=new_shape, operation="average"))
|
||||
# sum_image = bin_ndarray(image, new_shape=new_shape, operation="sum")
|
||||
# mask = sum_image > 0.0
|
||||
new_error = np.zeros(rms_image.shape)
|
||||
if operation.lower() in ["mean", "average", "avg"]:
|
||||
new_error = np.sqrt(bin_ndarray(error**2, new_shape=new_shape, operation="average"))
|
||||
else:
|
||||
new_error = np.sqrt(bin_ndarray(error**2, new_shape=new_shape, operation="sum"))
|
||||
rebinned_error.append(np.sqrt(rms_image**2 + new_error**2))
|
||||
|
||||
# Update header
|
||||
nw = w.deepcopy()
|
||||
nw.wcs.cdelt *= Dxy
|
||||
nw.wcs.crpix /= Dxy
|
||||
nw.array_shape = new_shape
|
||||
new_header["NAXIS1"], new_header["NAXIS2"] = nw.array_shape
|
||||
for key, val in nw.to_header().items():
|
||||
new_header.set(key, val)
|
||||
rebinned_headers.append(new_header)
|
||||
if data_mask is not None:
|
||||
data_mask = bin_ndarray(data_mask, new_shape=new_shape, operation="average") > 0.80
|
||||
# Update header
|
||||
nw = w.deepcopy()
|
||||
nw.wcs.cdelt *= Dxy
|
||||
nw.wcs.crpix /= Dxy
|
||||
nw.array_shape = new_shape
|
||||
new_header["NAXIS1"], new_header["NAXIS2"] = nw.array_shape
|
||||
for key, val in nw.to_header().items():
|
||||
new_header.set(key, val)
|
||||
new_header["SAMPLING"] = (str(pxsize)+scale, "Resampling performed during reduction")
|
||||
rebinned_headers.append(new_header)
|
||||
if data_mask is not None:
|
||||
data_mask = bin_ndarray(data_mask, new_shape=new_shape, operation="average") > 0.80
|
||||
|
||||
rebinned_data = np.array(rebinned_data)
|
||||
rebinned_error = np.array(rebinned_error)
|
||||
@@ -682,7 +676,7 @@ def rebin_array(data_array, error_array, headers, pxsize, scale, operation="sum"
|
||||
return rebinned_data, rebinned_error, rebinned_headers, Dxy, data_mask
|
||||
|
||||
|
||||
def align_data(data_array, headers, error_array=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False):
|
||||
def align_data(data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False):
|
||||
"""
|
||||
Align images in data_array using cross correlation, and rescale them to
|
||||
wider images able to contain any rotation of the reference image.
|
||||
@@ -760,10 +754,14 @@ def align_data(data_array, headers, error_array=None, background=None, upsample_
|
||||
full_headers.append(headers[0])
|
||||
err_array = np.concatenate((error_array, [np.zeros(ref_data.shape)]), axis=0)
|
||||
|
||||
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
||||
if data_mask is None:
|
||||
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
||||
else:
|
||||
full_array, err_array, data_mask, full_headers = crop_array(full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0)
|
||||
|
||||
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
|
||||
error_array = err_array[:-1]
|
||||
|
||||
do_shift = True
|
||||
if ref_center is None:
|
||||
# Define the center of the reference image to be the center pixel
|
||||
@@ -788,6 +786,8 @@ def align_data(data_array, headers, error_array=None, background=None, upsample_
|
||||
res_shift = res_center - ref_center
|
||||
res_mask = np.zeros((res_shape, res_shape), dtype=bool)
|
||||
res_mask[res_shift[0] : res_shift[0] + shape[1], res_shift[1] : res_shift[1] + shape[2]] = True
|
||||
if data_mask is not None:
|
||||
res_mask = np.logical_and(res_mask,zeropad(data_mask, (res_shape, res_shape)).astype(bool))
|
||||
|
||||
shifts, errors = [], []
|
||||
for i, image in enumerate(data_array):
|
||||
@@ -806,9 +806,11 @@ def align_data(data_array, headers, error_array=None, background=None, upsample_
|
||||
rescaled_image[i] = sc_shift(rescaled_image[i], shift, order=1, cval=0.0)
|
||||
rescaled_error[i] = sc_shift(rescaled_error[i], shift, order=1, cval=background[i])
|
||||
|
||||
curr_mask = sc_shift(res_mask, shift, order=1, cval=False)
|
||||
mask_vertex = clean_ROI(curr_mask)
|
||||
rescaled_mask[i, mask_vertex[2] : mask_vertex[3], mask_vertex[0] : mask_vertex[1]] = True
|
||||
curr_mask = sc_shift(res_mask*10., shift, order=1, cval=0.0)
|
||||
curr_mask[curr_mask < curr_mask.max()*2./3.] = 0.0
|
||||
rescaled_mask[i] = curr_mask.astype(bool)
|
||||
# mask_vertex = clean_ROI(curr_mask)
|
||||
# rescaled_mask[i, mask_vertex[2] : mask_vertex[3], mask_vertex[0] : mask_vertex[1]] = True
|
||||
|
||||
rescaled_image[i][rescaled_image[i] < 0.0] = 0.0
|
||||
rescaled_image[i][(1 - rescaled_mask[i]).astype(bool)] = 0.0
|
||||
@@ -842,7 +844,7 @@ def align_data(data_array, headers, error_array=None, background=None, upsample_
|
||||
return data_array, error_array, headers, data_mask
|
||||
|
||||
|
||||
def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.0, scale="pixel", smoothing="gaussian"):
|
||||
def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.5, scale="pixel", smoothing="weighted_gaussian"):
|
||||
"""
|
||||
Smooth a data_array using selected function.
|
||||
----------
|
||||
@@ -886,13 +888,19 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.0, scale="pi
|
||||
pxsize[i] = np.round(w.wcs.cdelt * 3600.0, 4)
|
||||
if (pxsize != pxsize[0]).any():
|
||||
raise ValueError("Not all images in array have same pixel size")
|
||||
FWHM_size = str(FWHM)
|
||||
FWHM_scale = "arcsec"
|
||||
FWHM /= pxsize[0].min()
|
||||
else:
|
||||
FWHM_size = str(FWHM)
|
||||
FWHM_scale = "px"
|
||||
|
||||
# Define gaussian stdev
|
||||
stdev = FWHM / (2.0 * np.sqrt(2.0 * np.log(2)))
|
||||
fmax = np.finfo(np.double).max
|
||||
|
||||
if smoothing.lower() in ["combine", "combining"]:
|
||||
smoothing = "combine"
|
||||
# Smooth using N images combination algorithm
|
||||
# Weight array
|
||||
weight = 1.0 / error_array**2
|
||||
@@ -928,6 +936,7 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.0, scale="pi
|
||||
smoothed[np.logical_or(np.isnan(smoothed * error), 1 - data_mask)] = 0.0
|
||||
|
||||
elif smoothing.lower() in ["weight_gauss", "weighted_gaussian", "gauss", "gaussian"]:
|
||||
smoothing = "gaussian"
|
||||
# Convolution with gaussian function
|
||||
smoothed = np.zeros(data_array.shape)
|
||||
error = np.zeros(error_array.shape)
|
||||
@@ -935,6 +944,7 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.0, scale="pi
|
||||
x, y = np.meshgrid(np.arange(-image.shape[1] / 2, image.shape[1] / 2), np.arange(-image.shape[0] / 2, image.shape[0] / 2))
|
||||
weights = np.ones(image_error.shape)
|
||||
if smoothing.lower()[:6] in ["weight"]:
|
||||
smoothing = "weighted gaussian"
|
||||
weights = 1.0 / image_error**2
|
||||
weights[(1 - np.isfinite(weights)).astype(bool)] = 0.0
|
||||
weights[(1 - data_mask).astype(bool)] = 0.0
|
||||
@@ -953,10 +963,13 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.0, scale="pi
|
||||
else:
|
||||
raise ValueError("{} is not a valid smoothing option".format(smoothing))
|
||||
|
||||
for header in headers:
|
||||
header["SMOOTH"] = (" ".join([smoothing,FWHM_size,FWHM_scale]),"Smoothing method used during reduction")
|
||||
|
||||
return smoothed, error
|
||||
|
||||
|
||||
def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None, scale="pixel", smoothing="gaussian"):
|
||||
def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=1.5, scale="pixel", smoothing="weighted_gaussian"):
|
||||
"""
|
||||
Make the average image from a single polarizer for a given instrument.
|
||||
-----------
|
||||
@@ -1115,7 +1128,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None, scale=
|
||||
return polarizer_array, polarizer_cov, pol_headers
|
||||
|
||||
|
||||
def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale="pixel", smoothing="combine", transmitcorr=True):
|
||||
def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale="pixel", smoothing="combine", transmitcorr=True, integrate=True):
|
||||
"""
|
||||
Compute the Stokes parameters I, Q and U for a given data_set
|
||||
----------
|
||||
@@ -1179,9 +1192,15 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
"Cannot reduce images from {0:s} instrument\
|
||||
(yet)".format(instr)
|
||||
)
|
||||
rotate = np.zeros(len(headers))
|
||||
for i,head in enumerate(headers):
|
||||
try:
|
||||
rotate[i] = head['ROTATE']
|
||||
except KeyError:
|
||||
rotate[i] = 0.
|
||||
|
||||
# Routine for the FOC instrument
|
||||
if instr == "FOC":
|
||||
if (np.unique(rotate) == rotate[0]).all():
|
||||
theta = globals()["theta"] - rotate[0] * np.pi / 180.0
|
||||
# Get image from each polarizer and covariance matrix
|
||||
pol_array, pol_cov, pol_headers = polarizer_avg(data_array, error_array, data_mask, headers, FWHM=FWHM, scale=scale, smoothing=smoothing)
|
||||
pol0, pol60, pol120 = pol_array
|
||||
@@ -1210,8 +1229,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
transmit *= transmit2 * transmit3 * transmit4
|
||||
pol_eff = np.array([globals()["pol_efficiency"]["pol0"], globals()["pol_efficiency"]["pol60"], globals()["pol_efficiency"]["pol120"]])
|
||||
|
||||
# Calculating correction factor
|
||||
# Calculating correction factor: allows all pol_filt to share same exptime and inverse sensitivity (taken to be the one from POL0)
|
||||
corr = np.array([1.0 * h["photflam"] / h["exptime"] for h in pol_headers]) * pol_headers[0]["exptime"] / pol_headers[0]["photflam"]
|
||||
pol_headers[1]['photflam'], pol_headers[1]['exptime'] = pol_headers[0]['photflam'], pol_headers[1]['exptime']
|
||||
pol_headers[2]['photflam'], pol_headers[2]['exptime'] = pol_headers[0]['photflam'], pol_headers[2]['exptime']
|
||||
|
||||
# Orientation and error for each polarizer
|
||||
# fmax = np.finfo(np.float64).max
|
||||
@@ -1223,17 +1244,17 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
coeff_stokes[0, i] = (
|
||||
pol_eff[(i + 1) % 3]
|
||||
* pol_eff[(i + 2) % 3]
|
||||
* np.sin(-2.0 * globals()["theta"][(i + 1) % 3] + 2.0 * globals()["theta"][(i + 2) % 3])
|
||||
* np.sin(-2.0 * theta[(i + 1) % 3] + 2.0 * theta[(i + 2) % 3])
|
||||
* 2.0
|
||||
/ transmit[i]
|
||||
)
|
||||
coeff_stokes[1, i] = (
|
||||
(-pol_eff[(i + 1) % 3] * np.sin(2.0 * globals()["theta"][(i + 1) % 3]) + pol_eff[(i + 2) % 3] * np.sin(2.0 * globals()["theta"][(i + 2) % 3]))
|
||||
(-pol_eff[(i + 1) % 3] * np.sin(2.0 * theta[(i + 1) % 3]) + pol_eff[(i + 2) % 3] * np.sin(2.0 * theta[(i + 2) % 3]))
|
||||
* 2.0
|
||||
/ transmit[i]
|
||||
)
|
||||
coeff_stokes[2, i] = (
|
||||
(pol_eff[(i + 1) % 3] * np.cos(2.0 * globals()["theta"][(i + 1) % 3]) - pol_eff[(i + 2) % 3] * np.cos(2.0 * globals()["theta"][(i + 2) % 3]))
|
||||
(pol_eff[(i + 1) % 3] * np.cos(2.0 * theta[(i + 1) % 3]) - pol_eff[(i + 2) % 3] * np.cos(2.0 * theta[(i + 2) % 3]))
|
||||
* 2.0
|
||||
/ transmit[i]
|
||||
)
|
||||
@@ -1294,9 +1315,9 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[0]
|
||||
/ N
|
||||
* (
|
||||
pol_eff[2] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0]) * (pol_flux_corr[1] - I_stokes)
|
||||
- pol_eff[1] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1]) * (pol_flux_corr[2] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 0] * (np.sin(2.0 * globals()["theta"][0]) * Q_stokes - np.cos(2 * globals()["theta"][0]) * U_stokes)
|
||||
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) * (pol_flux_corr[1] - I_stokes)
|
||||
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) * (pol_flux_corr[2] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dI_dtheta2 = (
|
||||
@@ -1304,9 +1325,9 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[1]
|
||||
/ N
|
||||
* (
|
||||
pol_eff[0] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1]) * (pol_flux_corr[2] - I_stokes)
|
||||
- pol_eff[2] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2]) * (pol_flux_corr[0] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 1] * (np.sin(2.0 * globals()["theta"][1]) * Q_stokes - np.cos(2 * globals()["theta"][1]) * U_stokes)
|
||||
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) * (pol_flux_corr[2] - I_stokes)
|
||||
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) * (pol_flux_corr[0] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dI_dtheta3 = (
|
||||
@@ -1314,9 +1335,9 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[2]
|
||||
/ N
|
||||
* (
|
||||
pol_eff[1] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2]) * (pol_flux_corr[0] - I_stokes)
|
||||
- pol_eff[0] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0]) * (pol_flux_corr[1] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 2] * (np.sin(2.0 * globals()["theta"][2]) * Q_stokes - np.cos(2 * globals()["theta"][2]) * U_stokes)
|
||||
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) * (pol_flux_corr[0] - I_stokes)
|
||||
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) * (pol_flux_corr[1] - I_stokes)
|
||||
+ coeff_stokes_corr[0, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dI_dtheta = np.array([dI_dtheta1, dI_dtheta2, dI_dtheta3])
|
||||
@@ -1326,13 +1347,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[0]
|
||||
/ N
|
||||
* (
|
||||
np.cos(2.0 * globals()["theta"][0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||
np.cos(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||
- (
|
||||
pol_eff[2] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0])
|
||||
- pol_eff[1] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1])
|
||||
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
||||
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
||||
)
|
||||
* Q_stokes
|
||||
+ coeff_stokes_corr[1, 0] * (np.sin(2.0 * globals()["theta"][0]) * Q_stokes - np.cos(2 * globals()["theta"][0]) * U_stokes)
|
||||
+ coeff_stokes_corr[1, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dQ_dtheta2 = (
|
||||
@@ -1340,13 +1361,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[1]
|
||||
/ N
|
||||
* (
|
||||
np.cos(2.0 * globals()["theta"][1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||
np.cos(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||
- (
|
||||
pol_eff[0] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1])
|
||||
- pol_eff[2] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2])
|
||||
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
||||
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
||||
)
|
||||
* Q_stokes
|
||||
+ coeff_stokes_corr[1, 1] * (np.sin(2.0 * globals()["theta"][1]) * Q_stokes - np.cos(2 * globals()["theta"][1]) * U_stokes)
|
||||
+ coeff_stokes_corr[1, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dQ_dtheta3 = (
|
||||
@@ -1354,13 +1375,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[2]
|
||||
/ N
|
||||
* (
|
||||
np.cos(2.0 * globals()["theta"][2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||
np.cos(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||
- (
|
||||
pol_eff[1] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2])
|
||||
- pol_eff[0] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0])
|
||||
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
||||
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
||||
)
|
||||
* Q_stokes
|
||||
+ coeff_stokes_corr[1, 2] * (np.sin(2.0 * globals()["theta"][2]) * Q_stokes - np.cos(2 * globals()["theta"][2]) * U_stokes)
|
||||
+ coeff_stokes_corr[1, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dQ_dtheta = np.array([dQ_dtheta1, dQ_dtheta2, dQ_dtheta3])
|
||||
@@ -1370,13 +1391,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[0]
|
||||
/ N
|
||||
* (
|
||||
np.sin(2.0 * globals()["theta"][0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||
np.sin(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||
- (
|
||||
pol_eff[2] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0])
|
||||
- pol_eff[1] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1])
|
||||
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
||||
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
||||
)
|
||||
* U_stokes
|
||||
+ coeff_stokes_corr[2, 0] * (np.sin(2.0 * globals()["theta"][0]) * Q_stokes - np.cos(2 * globals()["theta"][0]) * U_stokes)
|
||||
+ coeff_stokes_corr[2, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dU_dtheta2 = (
|
||||
@@ -1384,13 +1405,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[1]
|
||||
/ N
|
||||
* (
|
||||
np.sin(2.0 * globals()["theta"][1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||
np.sin(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||
- (
|
||||
pol_eff[0] * np.cos(-2.0 * globals()["theta"][0] + 2.0 * globals()["theta"][1])
|
||||
- pol_eff[2] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2])
|
||||
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
||||
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
||||
)
|
||||
* U_stokes
|
||||
+ coeff_stokes_corr[2, 1] * (np.sin(2.0 * globals()["theta"][1]) * Q_stokes - np.cos(2 * globals()["theta"][1]) * U_stokes)
|
||||
+ coeff_stokes_corr[2, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dU_dtheta3 = (
|
||||
@@ -1398,13 +1419,13 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
* pol_eff[2]
|
||||
/ N
|
||||
* (
|
||||
np.sin(2.0 * globals()["theta"][2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||
np.sin(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||
- (
|
||||
pol_eff[1] * np.cos(-2.0 * globals()["theta"][1] + 2.0 * globals()["theta"][2])
|
||||
- pol_eff[0] * np.cos(-2.0 * globals()["theta"][2] + 2.0 * globals()["theta"][0])
|
||||
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
||||
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
||||
)
|
||||
* U_stokes
|
||||
+ coeff_stokes_corr[2, 2] * (np.sin(2.0 * globals()["theta"][2]) * Q_stokes - np.cos(2 * globals()["theta"][2]) * U_stokes)
|
||||
+ coeff_stokes_corr[2, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
||||
)
|
||||
)
|
||||
dU_dtheta = np.array([dU_dtheta1, dU_dtheta2, dU_dtheta3])
|
||||
@@ -1422,8 +1443,48 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
Stokes_cov[1, 1] += s_Q2_axis + s_Q2_stat
|
||||
Stokes_cov[2, 2] += s_U2_axis + s_U2_stat
|
||||
|
||||
# Save values to single header
|
||||
header_stokes = pol_headers[0]
|
||||
|
||||
else:
|
||||
all_I_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_Q_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_U_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_Stokes_cov = np.zeros((np.unique(rotate).size, 3, 3, data_array.shape[1], data_array.shape[2]))
|
||||
all_header_stokes = [{},]*np.unique(rotate).size
|
||||
|
||||
for i,rot in enumerate(np.unique(rotate)):
|
||||
rot_mask = (rotate == rot)
|
||||
all_I_stokes[i], all_Q_stokes[i], all_U_stokes[i], all_Stokes_cov[i], all_header_stokes[i] = compute_Stokes(data_array[rot_mask], error_array[rot_mask], data_mask, [headers[i] for i in np.arange(len(headers))[rot_mask]], FWHM=FWHM, scale=scale, smoothing=smoothing, transmitcorr=transmitcorr, integrate=False)
|
||||
all_exp = np.array([float(h['exptime']) for h in all_header_stokes])
|
||||
|
||||
I_stokes = np.sum([exp*I for exp, I in zip(all_exp, all_I_stokes)],axis=0) / all_exp.sum()
|
||||
Q_stokes = np.sum([exp*Q for exp, Q in zip(all_exp, all_Q_stokes)],axis=0) / all_exp.sum()
|
||||
U_stokes = np.sum([exp*U for exp, U in zip(all_exp, all_U_stokes)],axis=0) / all_exp.sum()
|
||||
Stokes_cov = np.zeros((3, 3, I_stokes.shape[0], I_stokes.shape[1]))
|
||||
for i in range(3):
|
||||
Stokes_cov[i,i] = np.sum([exp**2*cov for exp, cov in zip(all_exp, all_Stokes_cov[:,i,i])], axis=0) / all_exp.sum()**2
|
||||
for j in [x for x in range(3) if x!=i]:
|
||||
Stokes_cov[i,j] = np.sqrt(np.sum([exp**2*cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:,i,j])], axis=0) / all_exp.sum()**2)
|
||||
Stokes_cov[j,i] = np.sqrt(np.sum([exp**2*cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:,j,i])], axis=0) / all_exp.sum()**2)
|
||||
|
||||
# Save values to single header
|
||||
header_stokes = all_header_stokes[0]
|
||||
header_stokes['exptime'] = all_exp.sum()
|
||||
|
||||
# Nan handling :
|
||||
fmax = np.finfo(np.float64).max
|
||||
|
||||
I_stokes[np.isnan(I_stokes)] = 0.0
|
||||
Q_stokes[I_stokes == 0.0] = 0.0
|
||||
U_stokes[I_stokes == 0.0] = 0.0
|
||||
Q_stokes[np.isnan(Q_stokes)] = 0.0
|
||||
U_stokes[np.isnan(U_stokes)] = 0.0
|
||||
Stokes_cov[np.isnan(Stokes_cov)] = fmax
|
||||
|
||||
if integrate:
|
||||
# Compute integrated values for P, PA before any rotation
|
||||
mask = np.logical_and(data_mask.astype(bool), (I_stokes > 0.0))
|
||||
mask = deepcopy(data_mask).astype(bool)
|
||||
I_diluted = I_stokes[mask].sum()
|
||||
Q_diluted = Q_stokes[mask].sum()
|
||||
U_diluted = U_stokes[mask].sum()
|
||||
@@ -1435,7 +1496,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
|
||||
|
||||
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
||||
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
||||
P_diluted_err = np.sqrt(
|
||||
(Q_diluted**2 * Q_diluted_err**2 + U_diluted**2 * U_diluted_err**2 + 2.0 * Q_diluted * U_diluted * QU_diluted_err) / (Q_diluted**2 + U_diluted**2)
|
||||
+ ((Q_diluted / I_diluted) ** 2 + (U_diluted / I_diluted) ** 2) * I_diluted_err**2
|
||||
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
||||
@@ -1447,16 +1508,15 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||
)
|
||||
|
||||
for header in headers:
|
||||
header["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header["P_int_err"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header["PA_int_err"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
|
||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov
|
||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes
|
||||
|
||||
|
||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
|
||||
"""
|
||||
Compute the polarization degree (in %) and angle (in deg) and their
|
||||
respective errors from given Stokes parameters.
|
||||
@@ -1473,8 +1533,8 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
+45/-45deg linear polarization intensity
|
||||
Stokes_cov : numpy.ndarray
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
headers : header list
|
||||
List of headers corresponding to the images in data_array.
|
||||
header_stokes : astropy.fits.header.Header
|
||||
Header file associated with the Stokes fluxes.
|
||||
----------
|
||||
Returns:
|
||||
P : numpy.ndarray
|
||||
@@ -1493,9 +1553,6 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
s_PA_P : numpy.ndarray
|
||||
Image (2D floats) containing the Poisson noise error on the
|
||||
polarization angle.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
for the new orientation angle.
|
||||
"""
|
||||
# Polarization degree and angle computation
|
||||
mask = I_stokes > 0.0
|
||||
@@ -1545,7 +1602,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
|
||||
# Compute the total exposure time so that
|
||||
# I_stokes*exp_tot = N_tot the total number of events
|
||||
exp_tot = np.array([header["exptime"] for header in headers]).sum()
|
||||
exp_tot = header_stokes["exptime"]
|
||||
# print("Total exposure time : {} sec".format(exp_tot))
|
||||
N_obs = I_stokes * exp_tot
|
||||
|
||||
@@ -1566,7 +1623,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||
|
||||
|
||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, ang=None, SNRi_cut=None):
|
||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None):
|
||||
"""
|
||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||
matrix to rotate Q, U of a given angle in degrees and update header
|
||||
@@ -1586,12 +1643,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
data_mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
List of headers corresponding to the reduced images.
|
||||
ang : float, optional
|
||||
Rotation angle (in degrees) that should be applied to the Stokes
|
||||
parameters. If None, will rotate to have North up.
|
||||
Defaults to None.
|
||||
header_stokes : astropy.fits.header.Header
|
||||
Header file associated with the Stokes fluxes.
|
||||
SNRi_cut : float, optional
|
||||
Cut that should be applied to the signal-to-noise ratio on I.
|
||||
Any SNR < SNRi_cut won't be displayed. If None, cut won't be applied.
|
||||
@@ -1609,8 +1662,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
accounting for +45/-45deg linear polarization intensity.
|
||||
new_Stokes_cov : numpy.ndarray
|
||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
new_header_stokes : astropy.fits.header.Header
|
||||
Updated Header file associated with the Stokes fluxes accounting
|
||||
for the new orientation angle.
|
||||
new_data_mask : numpy.ndarray
|
||||
Updated 2D boolean array delimiting the data to work on.
|
||||
@@ -1628,11 +1681,12 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
U_stokes[i, j] = eps * np.sqrt(Stokes_cov[2, 2][i, j])
|
||||
|
||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||
if ang is None:
|
||||
ang = np.zeros((len(headers),))
|
||||
for i, head in enumerate(headers):
|
||||
ang[i] = -head["orientat"]
|
||||
ang = ang.mean()
|
||||
# ang = np.zeros((len(headers),))
|
||||
# for i, head in enumerate(headers):
|
||||
# pc = WCS(head).celestial.wcs.pc[0,0]
|
||||
# ang[i] = -np.arccos(WCS(head).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
||||
pc = WCS(header_stokes).celestial.wcs.pc[0,0]
|
||||
ang = -np.arccos(WCS(header_stokes).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
||||
alpha = np.pi / 180.0 * ang
|
||||
mrot = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(2.0 * alpha), np.sin(2.0 * alpha)], [0, -np.sin(2.0 * alpha), np.cos(2.0 * alpha)]])
|
||||
|
||||
@@ -1668,24 +1722,22 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
|
||||
|
||||
# Update headers to new angle
|
||||
new_headers = []
|
||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||
for header in headers:
|
||||
new_header = deepcopy(header)
|
||||
new_header["orientat"] = header["orientat"] + ang
|
||||
new_wcs = WCS(header).celestial.deepcopy()
|
||||
|
||||
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
||||
new_wcs.wcs.crpix = np.dot(mrot, new_wcs.wcs.crpix - old_center[::-1]) + new_center[::-1]
|
||||
new_wcs.wcs.set()
|
||||
for key, val in new_wcs.to_header().items():
|
||||
new_header.set(key, val)
|
||||
if new_wcs.wcs.pc[0, 0] == 1.0:
|
||||
new_header.set("PC1_1", 1.0)
|
||||
if new_wcs.wcs.pc[1, 1] == 1.0:
|
||||
new_header.set("PC2_2", 1.0)
|
||||
new_header_stokes = deepcopy(header_stokes)
|
||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
||||
new_wcs = WCS(header_stokes).celestial.deepcopy()
|
||||
|
||||
new_headers.append(new_header)
|
||||
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
||||
new_wcs.wcs.crpix = np.dot(mrot, new_wcs.wcs.crpix - old_center[::-1]) + new_center[::-1]
|
||||
new_wcs.wcs.set()
|
||||
for key, val in new_wcs.to_header().items():
|
||||
new_header_stokes.set(key, val)
|
||||
if new_wcs.wcs.pc[0, 0] == 1.0:
|
||||
new_header_stokes.set("PC1_1", 1.0)
|
||||
if new_wcs.wcs.pc[1, 1] == 1.0:
|
||||
new_header_stokes.set("PC2_2", 1.0)
|
||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
||||
|
||||
# Nan handling :
|
||||
fmax = np.finfo(np.float64).max
|
||||
@@ -1722,16 +1774,15 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||
)
|
||||
|
||||
for header in new_headers:
|
||||
header["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header["P_int_err"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header["PA_int_err"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
new_header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
new_header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
|
||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_headers
|
||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes
|
||||
|
||||
|
||||
def rotate_data(data_array, error_array, data_mask, headers, ang):
|
||||
def rotate_data(data_array, error_array, data_mask, headers):
|
||||
"""
|
||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||
matrix to rotate Q, U of a given angle in degrees and update header
|
||||
@@ -1746,9 +1797,6 @@ def rotate_data(data_array, error_array, data_mask, headers, ang):
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
List of headers corresponding to the reduced images.
|
||||
ang : float
|
||||
Rotation angle (in degrees) that should be applied to the Stokes
|
||||
parameters
|
||||
----------
|
||||
Returns:
|
||||
new_data_array : numpy.ndarray
|
||||
@@ -1762,7 +1810,6 @@ def rotate_data(data_array, error_array, data_mask, headers, ang):
|
||||
for the new orientation angle.
|
||||
"""
|
||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||
alpha = ang * np.pi / 180.0
|
||||
|
||||
old_center = np.array(data_array[0].shape) / 2
|
||||
shape = np.fix(np.array(data_array[0].shape) * np.sqrt(2.5)).astype(int)
|
||||
@@ -1771,37 +1818,41 @@ def rotate_data(data_array, error_array, data_mask, headers, ang):
|
||||
data_array = zeropad(data_array, [data_array.shape[0], *shape])
|
||||
error_array = zeropad(error_array, [error_array.shape[0], *shape])
|
||||
data_mask = zeropad(data_mask, shape)
|
||||
|
||||
# Rotate original images using scipy.ndimage.rotate
|
||||
new_headers = []
|
||||
new_data_array = []
|
||||
new_error_array = []
|
||||
for i in range(data_array.shape[0]):
|
||||
new_data_mask = []
|
||||
for i,header in zip(range(data_array.shape[0]),headers):
|
||||
ang = -float(header["ORIENTAT"])
|
||||
alpha = ang * np.pi / 180.0
|
||||
|
||||
new_data_array.append(sc_rotate(data_array[i], ang, order=1, reshape=False, cval=0.0))
|
||||
new_error_array.append(sc_rotate(error_array[i], ang, order=1, reshape=False, cval=0.0))
|
||||
new_data_array = np.array(new_data_array)
|
||||
new_error_array = np.array(new_error_array)
|
||||
new_data_mask = sc_rotate(data_mask * 10.0, ang, order=1, reshape=False, cval=0.0)
|
||||
new_data_mask[new_data_mask < 2] = 0.0
|
||||
new_data_mask = new_data_mask.astype(bool)
|
||||
new_data_mask.append(sc_rotate(data_mask * 10.0, ang, order=1, reshape=False, cval=0.0))
|
||||
|
||||
for i in range(new_data_array.shape[0]):
|
||||
new_data_array[i][new_data_array[i] < 0.0] = 0.0
|
||||
|
||||
# Update headers to new angle
|
||||
new_headers = []
|
||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||
for header in headers:
|
||||
# Update headers to new angle
|
||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||
new_header = deepcopy(header)
|
||||
new_header["orientat"] = header["orientat"] + ang
|
||||
|
||||
new_wcs = WCS(header).celestial.deepcopy()
|
||||
|
||||
new_wcs.wcs.pc[:2, :2] = np.dot(mrot, new_wcs.wcs.pc[:2, :2])
|
||||
new_wcs.wcs.crpix[:2] = np.dot(mrot, new_wcs.wcs.crpix[:2] - old_center[::-1]) + new_center[::-1]
|
||||
new_wcs.wcs.set()
|
||||
for key, val in new_wcs.to_header().items():
|
||||
new_header[key] = val
|
||||
|
||||
new_header["ORIENTAT"] = np.arccos(new_wcs.celestial.wcs.pc[0,0]) * 180.0 / np.pi
|
||||
new_header["ROTATE"] = ang
|
||||
new_headers.append(new_header)
|
||||
globals()["theta"] = globals()["theta"] - alpha
|
||||
|
||||
new_data_array = np.array(new_data_array)
|
||||
new_error_array = np.array(new_error_array)
|
||||
new_data_mask = np.array(new_data_mask).sum(axis=0)
|
||||
new_data_mask[new_data_mask < new_data_mask.max()*2./3.] = 0.0
|
||||
new_data_mask = new_data_mask.astype(bool)
|
||||
|
||||
for i in range(new_data_array.shape[0]):
|
||||
new_data_array[i][new_data_array[i] < 0.0] = 0.0
|
||||
|
||||
return new_data_array, new_error_array, new_data_mask, new_headers
|
||||
|
||||
Reference in New Issue
Block a user