143 lines
5.6 KiB
Python
Executable File
143 lines
5.6 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding:utf-8 -*-
|
|
# Project libraries
|
|
|
|
import numpy as np
|
|
|
|
|
|
def same_reduction(infiles):
|
|
"""
|
|
Test if infiles are pipeline productions with same parameters.
|
|
"""
|
|
from astropy.io.fits import open as fits_open
|
|
|
|
params = {"IQU": [], "TARGNAME": [], "BKG_SUB": [], "SAMPLING": [], "SMOOTHING": []}
|
|
for file in infiles:
|
|
with fits_open(file) as f:
|
|
# test for presence of I, Q, U images
|
|
datatype = []
|
|
for hdu in f:
|
|
try:
|
|
datatype.append(hdu.header["datatype"])
|
|
except KeyError:
|
|
pass
|
|
test_IQU = True
|
|
for look in ["I_stokes", "Q_stokes", "U_stokes", "IQU_cov_matrix"]:
|
|
test_IQU *= look in datatype
|
|
params["IQU"].append(test_IQU)
|
|
# look for information on reduction procedure
|
|
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
|
|
try:
|
|
params[key].append(f[0].header[key])
|
|
except KeyError:
|
|
params[key].append("null")
|
|
result = np.all(params["IQU"])
|
|
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
|
|
result *= np.unique(params[key]).size == 1
|
|
|
|
return result
|
|
|
|
|
|
def same_obs(infiles, data_folder):
|
|
"""
|
|
Group infiles into same observations.
|
|
"""
|
|
|
|
import astropy.units as u
|
|
from astropy.io.fits import getheader
|
|
from astropy.table import Table
|
|
from astropy.time import Time, TimeDelta
|
|
|
|
headers = [getheader("/".join([data_folder,file])) for file in infiles]
|
|
files = {}
|
|
files["PROPOSID"] = np.array([str(head["PROPOSID"]) for head in headers],dtype=str)
|
|
files["ROOTNAME"] = np.array([head["ROOTNAME"].lower()+"_c0f.fits" for head in headers],dtype=str)
|
|
files["EXPSTART"] = np.array([Time(head["EXPSTART"],format='mjd') for head in headers])
|
|
products = Table(files)
|
|
|
|
new_infiles = []
|
|
for pid in np.unique(products["PROPOSID"]):
|
|
obs = products[products["PROPOSID"] == pid].copy()
|
|
close_date = np.unique(
|
|
[[np.abs(TimeDelta(obs["EXPSTART"][i].unix - date.unix, format="sec")) < 7.0 * u.d for i in range(len(obs))] for date in obs["EXPSTART"]], axis=0
|
|
)
|
|
if len(close_date) > 1:
|
|
for date in close_date:
|
|
new_infiles.append(list(products["ROOTNAME"][np.any([products["ROOTNAME"] == dataset for dataset in obs["ROOTNAME"][date]], axis=0)]))
|
|
else:
|
|
new_infiles.append(list(products["ROOTNAME"][products["PROPOSID"] == pid]))
|
|
return new_infiles
|
|
|
|
|
|
def combine_Stokes(infiles):
|
|
"""
|
|
Combine I, Q, U from different observations of a same object.
|
|
"""
|
|
print("not implemented yet")
|
|
|
|
return infiles
|
|
|
|
|
|
def main(infiles, target=None, output_dir="./data/"):
|
|
""" """
|
|
if target is None:
|
|
target = input("Target name:\n>")
|
|
|
|
if not same_reduction(infiles):
|
|
print("NOT SAME REDUC")
|
|
from FOC_reduction import main as FOC_reduction
|
|
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
|
|
data_folder = prod[0][0]
|
|
infiles = [p[1] for p in prod]
|
|
# Reduction parameters
|
|
kwargs = {}
|
|
# Background estimation
|
|
kwargs["error_sub_type"] = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
|
kwargs["subtract_error"] = 0.7
|
|
|
|
# Data binning
|
|
kwargs["pxsize"] = 0.1
|
|
kwargs["pxscale"] = "arcsec" # pixel, arcsec or full
|
|
|
|
# Smoothing
|
|
kwargs["smoothing_function"] = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
|
kwargs["smoothing_FWHM"] = 0.2 # If None, no smoothing is done
|
|
kwargs["smoothing_scale"] = "arcsec" # pixel or arcsec
|
|
|
|
# Polarization map output
|
|
kwargs["SNRp_cut"] = 3.0 # P measurments with SNR>3
|
|
kwargs["SNRi_cut"] = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
|
kwargs["flux_lim"] = 1e-19, 3e-17 # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
|
kwargs["scale_vec"] = 5
|
|
kwargs["step_vec"] = (
|
|
1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
|
)
|
|
grouped_infiles = same_obs(infiles, data_folder)
|
|
print(grouped_infiles)
|
|
|
|
new_infiles = []
|
|
for i,group in enumerate(grouped_infiles):
|
|
new_infiles.append(FOC_reduction(target=target+"-"+str(i+1), infiles=["/".join([data_folder,file]) for file in group], interactive=True, **kwargs))
|
|
|
|
combined_Stokes = combine_Stokes(new_infiles)
|
|
|
|
else:
|
|
print("SAME REDUC")
|
|
combined_Stokes = combine_Stokes(infiles)
|
|
|
|
return combined_Stokes
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description="Combine different observations of a single object")
|
|
parser.add_argument("-t", "--target", metavar="targetname", required=False, help="the name of the target", type=str, default=None)
|
|
parser.add_argument("-f", "--files", metavar="path", required=False, nargs="*", help="the full or relative path to the data products", default=None)
|
|
parser.add_argument(
|
|
"-o", "--output_dir", metavar="directory_path", required=False, help="output directory path for the data products", type=str, default="./data"
|
|
)
|
|
args = parser.parse_args()
|
|
exitcode = main(target=args.target, infiles=args.files, output_dir=args.output_dir)
|
|
print("Written to: ", exitcode)
|