Compare commits
16 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| d505ef6f8a | |||
|
|
2d0d8105be | ||
|
|
c41526c0a6 | ||
|
|
a72b799713 | ||
|
|
fa4dce398f | ||
|
|
3c8ca6ac1a | ||
|
|
62aef1b1c4 | ||
|
|
8e5f439259 | ||
| 163f37d5b2 | |||
| af8741fbc5 | |||
| 8c88d6424b | |||
| 576c2638f3 | |||
|
|
c584a56b24 | ||
|
|
a4e8f51c50 | ||
|
|
b176e7a56e | ||
|
|
69b3937e9c |
@@ -36,12 +36,12 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
# Background estimation
|
# Background estimation
|
||||||
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||||
subtract_error = 2.0
|
subtract_error = 1.0
|
||||||
display_bkg = False
|
display_bkg = False
|
||||||
|
|
||||||
# Data binning
|
# Data binning
|
||||||
pxsize = 2
|
pxsize = 0.05
|
||||||
pxscale = "px" # pixel, arcsec or full
|
pxscale = "arcsec" # pixel, arcsec or full
|
||||||
rebin_operation = "sum" # sum or average
|
rebin_operation = "sum" # sum or average
|
||||||
|
|
||||||
# Alignement
|
# Alignement
|
||||||
@@ -54,8 +54,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||||
smoothing_FWHM = 1.50 # If None, no smoothing is done
|
smoothing_FWHM = 0.10 # If None, no smoothing is done
|
||||||
smoothing_scale = "px" # pixel or arcsec
|
smoothing_scale = "arcsec" # pixel or arcsec
|
||||||
|
|
||||||
# Rotation
|
# Rotation
|
||||||
rotate_North = True
|
rotate_North = True
|
||||||
@@ -67,6 +67,16 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
scale_vec = 5
|
scale_vec = 5
|
||||||
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||||
|
|
||||||
|
# Adaptive binning
|
||||||
|
# in order to perfrom optimal binning, there are several steps to follow:
|
||||||
|
# 1. Load the data again and preserve the full images
|
||||||
|
# 2. Skip the cropping step but use the same error and background estimation
|
||||||
|
# 3. Use the same alignment as the routine
|
||||||
|
# 4. Skip the rebinning step
|
||||||
|
# 5. Calulate the Stokes parameters without smoothing
|
||||||
|
optimal_binning = False
|
||||||
|
optimize = False
|
||||||
|
|
||||||
# Pipeline start
|
# Pipeline start
|
||||||
|
|
||||||
# Step 1:
|
# Step 1:
|
||||||
@@ -111,297 +121,592 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
if align_center is None:
|
if align_center is None:
|
||||||
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
|
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
|
||||||
|
|
||||||
# Crop data to remove outside blank margins.
|
if optimal_binning:
|
||||||
data_array, error_array, headers = proj_red.crop_array(
|
from lib.background import subtract_bkg
|
||||||
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
|
|
||||||
)
|
|
||||||
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
|
||||||
|
|
||||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
options = {"optimize": optimize, "optimal_binning": True}
|
||||||
if deconvolve:
|
|
||||||
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
|
|
||||||
|
|
||||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
# Step 1: Load the data again and preserve the full images
|
||||||
background = None
|
_data_array, _headers = deepcopy(data_array), deepcopy(headers) # Preserve full images
|
||||||
data_array, error_array, headers, background = proj_red.get_error(
|
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
||||||
data_array,
|
|
||||||
headers,
|
|
||||||
error_array,
|
|
||||||
data_mask=data_mask,
|
|
||||||
sub_type=error_sub_type,
|
|
||||||
subtract_error=subtract_error,
|
|
||||||
display=display_bkg,
|
|
||||||
savename="_".join([figname, "errors"]),
|
|
||||||
plots_folder=plots_folder,
|
|
||||||
return_background=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Rotate data to have same orientation
|
# Step 2: Skip the cropping step but use the same error and background estimation (I don't understand why this is wrong)
|
||||||
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
|
data_array, error_array, headers = proj_red.crop_array(
|
||||||
if rotate_data:
|
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
|
||||||
ang = np.mean([head["ORIENTAT"] for head in headers])
|
)
|
||||||
for head in headers:
|
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
||||||
head["ORIENTAT"] -= ang
|
|
||||||
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers)
|
background = None
|
||||||
if display_data:
|
_, _, _, background, error_bkg = proj_red.get_error(
|
||||||
|
data_array,
|
||||||
|
headers,
|
||||||
|
error_array,
|
||||||
|
data_mask=data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=subtract_error,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# _background is the same as background, but for the optimal binning
|
||||||
|
_background = None
|
||||||
|
_data_array, _error_array, _ = proj_red.get_error(
|
||||||
|
_data_array,
|
||||||
|
_headers,
|
||||||
|
error_array=None,
|
||||||
|
data_mask=_data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=False,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=False,
|
||||||
|
)
|
||||||
|
_error_bkg = np.ones_like(_data_array) * error_bkg[:, 0, 0, np.newaxis, np.newaxis]
|
||||||
|
_data_array, _error_array, _background, _ = subtract_bkg(_data_array, _error_array, _data_mask, background, _error_bkg)
|
||||||
|
|
||||||
|
# Step 3: Align and rescale images with oversampling. (has to disable croping in align_data function)
|
||||||
|
_data_array, _error_array, _headers, _, shifts, error_shifts = proj_red.align_data(
|
||||||
|
_data_array,
|
||||||
|
_headers,
|
||||||
|
error_array=_error_array,
|
||||||
|
background=_background,
|
||||||
|
upsample_factor=10,
|
||||||
|
ref_center=align_center,
|
||||||
|
return_shifts=True,
|
||||||
|
optimal_binning=True,
|
||||||
|
)
|
||||||
|
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
||||||
|
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
|
# Step 4: Compute Stokes I, Q, U
|
||||||
|
_background = np.array([np.array(bkg).reshape(1, 1) for bkg in _background])
|
||||||
|
_background_error = np.array(
|
||||||
|
[
|
||||||
|
np.array(
|
||||||
|
np.sqrt(
|
||||||
|
(bkg - _background[np.array([h["filtnam1"] == head["filtnam1"] for h in _headers], dtype=bool)].mean()) ** 2
|
||||||
|
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in _headers])
|
||||||
|
)
|
||||||
|
).reshape(1, 1)
|
||||||
|
for bkg, head in zip(_background, _headers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes = proj_red.compute_Stokes(
|
||||||
|
_data_array, _error_array, _data_mask, _headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||||
|
)
|
||||||
|
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg = proj_red.compute_Stokes(
|
||||||
|
_background,
|
||||||
|
_background_error,
|
||||||
|
np.array(True).reshape(1, 1),
|
||||||
|
_headers,
|
||||||
|
FWHM=None,
|
||||||
|
scale=smoothing_scale,
|
||||||
|
smoothing=smoothing_function,
|
||||||
|
transmitcorr=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 5: Compute polarimetric parameters (polarization degree and angle).
|
||||||
|
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes)
|
||||||
|
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg)
|
||||||
|
|
||||||
|
# Step 6: Save image to FITS.
|
||||||
|
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||||
|
_Stokes_hdul = proj_fits.save_Stokes(
|
||||||
|
_I_stokes,
|
||||||
|
_Q_stokes,
|
||||||
|
_U_stokes,
|
||||||
|
_Stokes_cov,
|
||||||
|
_P,
|
||||||
|
_debiased_P,
|
||||||
|
_s_P,
|
||||||
|
_s_P_P,
|
||||||
|
_PA,
|
||||||
|
_s_PA,
|
||||||
|
_s_PA_P,
|
||||||
|
_header_stokes,
|
||||||
|
_data_mask,
|
||||||
|
figname,
|
||||||
|
data_folder=data_folder,
|
||||||
|
return_hdul=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 6:
|
||||||
|
_data_mask = _Stokes_hdul["data_mask"].data.astype(bool)
|
||||||
|
print(
|
||||||
|
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
|
_header_stokes["PHOTPLAM"],
|
||||||
|
*sci_not(
|
||||||
|
_Stokes_hdul[0].data[_data_mask].sum() * _header_stokes["PHOTFLAM"],
|
||||||
|
np.sqrt(_Stokes_hdul[3].data[0, 0][_data_mask].sum()) * _header_stokes["PHOTFLAM"],
|
||||||
|
2,
|
||||||
|
out=int,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print("P_int = {0:.1f} ± {1:.1f} %".format(_header_stokes["p_int"] * 100.0, np.ceil(_header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||||
|
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(_header_stokes["pa_int"]), princ_angle(np.ceil(_header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||||
|
# Background values
|
||||||
|
print(
|
||||||
|
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
|
_header_stokes["PHOTFLAM"],
|
||||||
|
*sci_not(_I_bkg[0, 0] * _header_stokes["PHOTFLAM"], np.sqrt(_S_cov_bkg[0, 0][0, 0]) * _header_stokes["PHOTFLAM"], 2, out=int),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0] * 100.0, np.ceil(_s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||||
|
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||||
|
|
||||||
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
|
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "I"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Intensity",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P_flux"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_Flux",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "PA"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_ang",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "I_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="I_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRi"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRi",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRp"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRp",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif not interactive:
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
savename=figname,
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="integrate",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif pxscale.lower() not in ["full", "integrate"]:
|
||||||
|
proj_plots.pol_map(_Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||||
|
|
||||||
|
else:
|
||||||
|
options = {"optimize": optimize, "optimal_binning": False}
|
||||||
|
# Crop data to remove outside blank margins.
|
||||||
|
data_array, error_array, headers = proj_red.crop_array(
|
||||||
|
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
|
||||||
|
)
|
||||||
|
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
|
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||||
|
if deconvolve:
|
||||||
|
data_array = proj_red.deconvolve_array(
|
||||||
|
data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo
|
||||||
|
)
|
||||||
|
|
||||||
|
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||||
|
background = None
|
||||||
|
data_array, error_array, headers, background, error_bkg = proj_red.get_error(
|
||||||
|
data_array,
|
||||||
|
headers,
|
||||||
|
error_array,
|
||||||
|
data_mask=data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=subtract_error,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Align and rescale images with oversampling.
|
||||||
|
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
|
||||||
|
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if display_align:
|
||||||
|
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
||||||
proj_plots.plot_obs(
|
proj_plots.plot_obs(
|
||||||
data_array,
|
data_array,
|
||||||
headers,
|
headers,
|
||||||
savename="_".join([figname, "rotate_data"]),
|
savename="_".join([figname, str(align_center)]),
|
||||||
plots_folder=plots_folder,
|
plots_folder=plots_folder,
|
||||||
norm=LogNorm(
|
norm=LogNorm(
|
||||||
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Align and rescale images with oversampling.
|
# Rebin data to desired pixel size.
|
||||||
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
|
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
||||||
data_array,
|
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
||||||
headers,
|
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
||||||
error_array=error_array,
|
)
|
||||||
data_mask=data_mask,
|
|
||||||
background=background,
|
|
||||||
upsample_factor=10,
|
|
||||||
ref_center=align_center,
|
|
||||||
return_shifts=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
if display_align:
|
# Rotate data to have same orientation
|
||||||
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
|
||||||
proj_plots.plot_obs(
|
if rotate_data:
|
||||||
data_array,
|
ang = np.mean([head["ORIENTAT"] for head in headers])
|
||||||
headers,
|
for head in headers:
|
||||||
savename="_".join([figname, str(align_center)]),
|
head["ORIENTAT"] -= ang
|
||||||
plots_folder=plots_folder,
|
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers)
|
||||||
norm=LogNorm(vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]),
|
if display_data:
|
||||||
)
|
proj_plots.plot_obs(
|
||||||
|
data_array,
|
||||||
# Rebin data to desired pixel size.
|
headers,
|
||||||
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
savename="_".join([figname, "rotate_data"]),
|
||||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
plots_folder=plots_folder,
|
||||||
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
norm=LogNorm(
|
||||||
)
|
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||||
|
),
|
||||||
# Plot array for checking output
|
|
||||||
if display_data and pxscale.lower() not in ["full", "integrate"]:
|
|
||||||
proj_plots.plot_obs(
|
|
||||||
data_array,
|
|
||||||
headers,
|
|
||||||
savename="_".join([figname, "rebin"]),
|
|
||||||
plots_folder=plots_folder,
|
|
||||||
norm=LogNorm(vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]),
|
|
||||||
)
|
|
||||||
|
|
||||||
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
|
|
||||||
background_error = np.array(
|
|
||||||
[
|
|
||||||
np.array(
|
|
||||||
np.sqrt(
|
|
||||||
(bkg - background[np.array([h["filtnam1"] == head["filtnam1"] for h in headers], dtype=bool)].mean()) ** 2
|
|
||||||
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in headers])
|
|
||||||
)
|
)
|
||||||
).reshape(1, 1)
|
|
||||||
for bkg, head in zip(background, headers)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Step 2:
|
# Plot array for checking output
|
||||||
# Compute Stokes I, Q, U with smoothed polarized images
|
if display_data and pxscale.lower() not in ["full", "integrate"]:
|
||||||
# SMOOTHING DISCUSSION :
|
proj_plots.plot_obs(
|
||||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
data_array,
|
||||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
headers,
|
||||||
# Bibcode : 1995chst.conf...10J
|
savename="_".join([figname, "rebin"]),
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
plots_folder=plots_folder,
|
||||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
norm=LogNorm(
|
||||||
)
|
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
),
|
||||||
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
|
)
|
||||||
)
|
|
||||||
|
|
||||||
# Step 3:
|
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
|
||||||
# Rotate images to have North up
|
background_error = np.array(
|
||||||
if rotate_North:
|
[
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
np.array(
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
np.sqrt(
|
||||||
)
|
(bkg - background[np.array([h["filtnam1"] == head["filtnam1"] for h in headers], dtype=bool)].mean()) ** 2
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
|
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in headers])
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
|
)
|
||||||
|
).reshape(1, 1)
|
||||||
|
for bkg, head in zip(background, headers)
|
||||||
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Step 2:
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
# Compute Stokes I, Q, U with smoothed polarized images
|
||||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
|
# SMOOTHING DISCUSSION :
|
||||||
|
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||||
|
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||||
|
# Bibcode : 1995chst.conf...10J
|
||||||
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
||||||
|
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||||
|
)
|
||||||
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
||||||
|
background,
|
||||||
|
background_error,
|
||||||
|
np.array(True).reshape(1, 1),
|
||||||
|
headers,
|
||||||
|
FWHM=None,
|
||||||
|
scale=smoothing_scale,
|
||||||
|
smoothing=smoothing_function,
|
||||||
|
transmitcorr=False,
|
||||||
|
)
|
||||||
|
|
||||||
# Step 4:
|
# Step 3:
|
||||||
# Save image to FITS.
|
# Rotate images to have North up
|
||||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
if rotate_North:
|
||||||
Stokes_hdul = proj_fits.save_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||||
I_stokes,
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
||||||
Q_stokes,
|
)
|
||||||
U_stokes,
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
|
||||||
Stokes_cov,
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
|
||||||
P,
|
)
|
||||||
debiased_P,
|
|
||||||
s_P,
|
|
||||||
s_P_P,
|
|
||||||
PA,
|
|
||||||
s_PA,
|
|
||||||
s_PA_P,
|
|
||||||
header_stokes,
|
|
||||||
data_mask,
|
|
||||||
figname,
|
|
||||||
data_folder=data_folder,
|
|
||||||
return_hdul=True,
|
|
||||||
)
|
|
||||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
|
||||||
|
|
||||||
# Step 5:
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
# crop to desired region of interest (roi)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||||
if crop:
|
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
|
||||||
figname += "_crop"
|
|
||||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
# Step 4:
|
||||||
stokescrop.crop()
|
# Save image to FITS.
|
||||||
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||||
Stokes_hdul, header_stokes = stokescrop.hdul_crop, stokescrop.hdul_crop[0].header
|
Stokes_hdul = proj_fits.save_Stokes(
|
||||||
|
I_stokes,
|
||||||
|
Q_stokes,
|
||||||
|
U_stokes,
|
||||||
|
Stokes_cov,
|
||||||
|
P,
|
||||||
|
debiased_P,
|
||||||
|
s_P,
|
||||||
|
s_P_P,
|
||||||
|
PA,
|
||||||
|
s_PA,
|
||||||
|
s_PA_P,
|
||||||
|
header_stokes,
|
||||||
|
data_mask,
|
||||||
|
figname,
|
||||||
|
data_folder=data_folder,
|
||||||
|
return_hdul=True,
|
||||||
|
)
|
||||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
|
|
||||||
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
# Step 5:
|
||||||
print(
|
# crop to desired region of interest (roi)
|
||||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
if crop:
|
||||||
header_stokes["PHOTPLAM"],
|
figname += "_crop"
|
||||||
*sci_not(
|
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
||||||
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
|
stokescrop.crop()
|
||||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
|
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
||||||
2,
|
Stokes_hdul, header_stokes = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||||
out=int,
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
),
|
|
||||||
|
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
||||||
|
print(
|
||||||
|
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
|
header_stokes["PHOTPLAM"],
|
||||||
|
*sci_not(
|
||||||
|
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
|
||||||
|
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
|
||||||
|
2,
|
||||||
|
out=int,
|
||||||
|
),
|
||||||
|
)
|
||||||
)
|
)
|
||||||
)
|
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||||
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
|
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
|
# Background values
|
||||||
# Background values
|
print(
|
||||||
print(
|
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
header_stokes["PHOTPLAM"],
|
||||||
header_stokes["photplam"], *sci_not(I_bkg[0, 0] * header_stokes["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["photflam"], 2, out=int)
|
*sci_not(I_bkg[0, 0] * header_stokes["PHOTPLAM"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["PHOTPLAM"], 2, out=int),
|
||||||
|
)
|
||||||
)
|
)
|
||||||
)
|
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
||||||
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
proj_plots.polarization_map(
|
||||||
proj_plots.polarization_map(
|
deepcopy(Stokes_hdul),
|
||||||
deepcopy(Stokes_hdul),
|
data_mask,
|
||||||
data_mask,
|
SNRp_cut=SNRp_cut,
|
||||||
SNRp_cut=SNRp_cut,
|
SNRi_cut=SNRi_cut,
|
||||||
SNRi_cut=SNRi_cut,
|
flux_lim=flux_lim,
|
||||||
flux_lim=flux_lim,
|
step_vec=step_vec,
|
||||||
step_vec=step_vec,
|
scale_vec=scale_vec,
|
||||||
scale_vec=scale_vec,
|
savename="_".join([figname]),
|
||||||
savename="_".join([figname]),
|
plots_folder=plots_folder,
|
||||||
plots_folder=plots_folder,
|
**options,
|
||||||
)
|
)
|
||||||
proj_plots.polarization_map(
|
proj_plots.polarization_map(
|
||||||
deepcopy(Stokes_hdul),
|
deepcopy(Stokes_hdul),
|
||||||
data_mask,
|
data_mask,
|
||||||
SNRp_cut=SNRp_cut,
|
SNRp_cut=SNRp_cut,
|
||||||
SNRi_cut=SNRi_cut,
|
SNRi_cut=SNRi_cut,
|
||||||
flux_lim=flux_lim,
|
flux_lim=flux_lim,
|
||||||
step_vec=step_vec,
|
step_vec=step_vec,
|
||||||
scale_vec=scale_vec,
|
scale_vec=scale_vec,
|
||||||
savename="_".join([figname, "I"]),
|
savename="_".join([figname, "I"]),
|
||||||
plots_folder=plots_folder,
|
plots_folder=plots_folder,
|
||||||
display="Intensity",
|
display="Intensity",
|
||||||
)
|
**options,
|
||||||
proj_plots.polarization_map(
|
)
|
||||||
deepcopy(Stokes_hdul),
|
proj_plots.polarization_map(
|
||||||
data_mask,
|
deepcopy(Stokes_hdul),
|
||||||
SNRp_cut=SNRp_cut,
|
data_mask,
|
||||||
SNRi_cut=SNRi_cut,
|
SNRp_cut=SNRp_cut,
|
||||||
flux_lim=flux_lim,
|
SNRi_cut=SNRi_cut,
|
||||||
step_vec=step_vec,
|
flux_lim=flux_lim,
|
||||||
scale_vec=scale_vec,
|
step_vec=step_vec,
|
||||||
savename="_".join([figname, "P_flux"]),
|
scale_vece=scale_vec,
|
||||||
plots_folder=plots_folder,
|
savename="_".join([figname, "P_flux"]),
|
||||||
display="Pol_Flux",
|
plots_folder=plots_folder,
|
||||||
)
|
display="Pol_Flux",
|
||||||
proj_plots.polarization_map(
|
**options,
|
||||||
deepcopy(Stokes_hdul),
|
)
|
||||||
data_mask,
|
proj_plots.polarization_map(
|
||||||
SNRp_cut=SNRp_cut,
|
deepcopy(Stokes_hdul),
|
||||||
SNRi_cut=SNRi_cut,
|
data_mask,
|
||||||
flux_lim=flux_lim,
|
SNRp_cut=SNRp_cut,
|
||||||
step_vec=step_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
scale_vec=scale_vec,
|
flux_lim=flux_lim,
|
||||||
savename="_".join([figname, "P"]),
|
step_vec=step_vec,
|
||||||
plots_folder=plots_folder,
|
scale_vec=scale_vec,
|
||||||
display="Pol_deg",
|
savename="_".join([figname, "P"]),
|
||||||
)
|
plots_folder=plots_folder,
|
||||||
proj_plots.polarization_map(
|
display="Pol_deg",
|
||||||
deepcopy(Stokes_hdul),
|
**options,
|
||||||
data_mask,
|
)
|
||||||
SNRp_cut=SNRp_cut,
|
proj_plots.polarization_map(
|
||||||
SNRi_cut=SNRi_cut,
|
deepcopy(Stokes_hdul),
|
||||||
flux_lim=flux_lim,
|
data_mask,
|
||||||
step_vec=step_vec,
|
SNRp_cut=SNRp_cut,
|
||||||
scale_vec=scale_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
savename="_".join([figname, "PA"]),
|
flux_lim=flux_lim,
|
||||||
plots_folder=plots_folder,
|
step_vec=step_vec,
|
||||||
display="Pol_ang",
|
scale_vec=scale_vec,
|
||||||
)
|
savename="_".join([figname, "PA"]),
|
||||||
proj_plots.polarization_map(
|
plots_folder=plots_folder,
|
||||||
deepcopy(Stokes_hdul),
|
display="Pol_ang",
|
||||||
data_mask,
|
**options,
|
||||||
SNRp_cut=SNRp_cut,
|
)
|
||||||
SNRi_cut=SNRi_cut,
|
proj_plots.polarization_map(
|
||||||
flux_lim=flux_lim,
|
deepcopy(Stokes_hdul),
|
||||||
step_vec=step_vec,
|
data_mask,
|
||||||
scale_vec=scale_vec,
|
SNRp_cut=SNRp_cut,
|
||||||
savename="_".join([figname, "I_err"]),
|
SNRi_cut=SNRi_cut,
|
||||||
plots_folder=plots_folder,
|
flux_lim=flux_lim,
|
||||||
display="I_err",
|
step_vec=step_vec,
|
||||||
)
|
scale_vec=scale_vec,
|
||||||
proj_plots.polarization_map(
|
savename="_".join([figname, "I_err"]),
|
||||||
deepcopy(Stokes_hdul),
|
plots_folder=plots_folder,
|
||||||
data_mask,
|
display="I_err",
|
||||||
SNRp_cut=SNRp_cut,
|
**options,
|
||||||
SNRi_cut=SNRi_cut,
|
)
|
||||||
flux_lim=flux_lim,
|
proj_plots.polarization_map(
|
||||||
step_vec=step_vec,
|
deepcopy(Stokes_hdul),
|
||||||
scale_vec=scale_vec,
|
data_mask,
|
||||||
savename="_".join([figname, "P_err"]),
|
SNRp_cut=SNRp_cut,
|
||||||
plots_folder=plots_folder,
|
SNRi_cut=SNRi_cut,
|
||||||
display="Pol_deg_err",
|
flux_lim=flux_lim,
|
||||||
)
|
step_vec=step_vec,
|
||||||
proj_plots.polarization_map(
|
scale_vec=scale_vec,
|
||||||
deepcopy(Stokes_hdul),
|
savename="_".join([figname, "P_err"]),
|
||||||
data_mask,
|
plots_folder=plots_folder,
|
||||||
SNRp_cut=SNRp_cut,
|
display="Pol_deg_err",
|
||||||
SNRi_cut=SNRi_cut,
|
**options,
|
||||||
flux_lim=flux_lim,
|
)
|
||||||
step_vec=step_vec,
|
proj_plots.polarization_map(
|
||||||
scale_vec=scale_vec,
|
deepcopy(Stokes_hdul),
|
||||||
savename="_".join([figname, "SNRi"]),
|
data_mask,
|
||||||
plots_folder=plots_folder,
|
SNRp_cut=SNRp_cut,
|
||||||
display="SNRi",
|
SNRi_cut=SNRi_cut,
|
||||||
)
|
flux_lim=flux_lim,
|
||||||
proj_plots.polarization_map(
|
step_vec=step_vec,
|
||||||
deepcopy(Stokes_hdul),
|
scale_vec=scale_vec,
|
||||||
data_mask,
|
savename="_".join([figname, "SNRi"]),
|
||||||
SNRp_cut=SNRp_cut,
|
plots_folder=plots_folder,
|
||||||
SNRi_cut=SNRi_cut,
|
display="SNRi",
|
||||||
flux_lim=flux_lim,
|
**options,
|
||||||
step_vec=step_vec,
|
)
|
||||||
scale_vec=scale_vec,
|
proj_plots.polarization_map(
|
||||||
savename="_".join([figname, "SNRp"]),
|
deepcopy(Stokes_hdul),
|
||||||
plots_folder=plots_folder,
|
data_mask,
|
||||||
display="SNRp",
|
SNRp_cut=SNRp_cut,
|
||||||
)
|
SNRi_cut=SNRi_cut,
|
||||||
elif not interactive:
|
flux_lim=flux_lim,
|
||||||
proj_plots.polarization_map(
|
step_vec=step_vec,
|
||||||
deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=figname, plots_folder=plots_folder, display="integrate"
|
scale_vec=scale_vec,
|
||||||
)
|
savename="_".join([figname, "SNRp"]),
|
||||||
elif pxscale.lower() not in ["full", "integrate"]:
|
plots_folder=plots_folder,
|
||||||
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, scale_vec=scale_vec, flux_lim=flux_lim)
|
display="SNRp",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif not interactive:
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
savename=figname,
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="integrate",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif pxscale.lower() not in ["full", "integrate"]:
|
||||||
|
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||||
|
|
||||||
return outfiles
|
return outfiles
|
||||||
|
|
||||||
|
|||||||
@@ -251,23 +251,18 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
|
|||||||
weights = 1 / chi2**2
|
weights = 1 / chi2**2
|
||||||
weights /= weights.sum()
|
weights /= weights.sum()
|
||||||
|
|
||||||
bkg = np.sum(weights * (coeff[:, 1] + np.abs(coeff[:, 2]) * subtract_error))
|
bkg = np.sum(weights*(coeff[:, 1]+np.abs(coeff[:, 2]) * subtract_error))
|
||||||
|
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
if np.abs(subtract_error) > 0:
|
|
||||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
|
if np.abs(subtract_error) > 0:
|
||||||
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||||
return n_data_array, n_error_array, headers, background
|
return n_data_array, n_error_array, headers, background, error_bkg
|
||||||
|
|
||||||
|
|
||||||
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
|
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||||
@@ -360,23 +355,19 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
|
|||||||
# popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
|
# popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
|
||||||
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
|
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
|
||||||
coeff.append(popt)
|
coeff.append(popt)
|
||||||
|
|
||||||
bkg = popt[1] + np.abs(popt[2]) * subtract_error
|
bkg = popt[1] + np.abs(popt[2]) * subtract_error
|
||||||
|
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
if np.abs(subtract_error) > 0:
|
|
||||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
|
if np.abs(subtract_error) > 0:
|
||||||
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||||
return n_data_array, n_error_array, headers, background
|
return n_data_array, n_error_array, headers, background, error_bkg
|
||||||
|
|
||||||
|
|
||||||
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||||
@@ -458,19 +449,28 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True
|
|||||||
# Compute error : root mean square of the background
|
# Compute error : root mean square of the background
|
||||||
sub_image = image[minima[0] : minima[0] + sub_shape[0], minima[1] : minima[1] + sub_shape[1]]
|
sub_image = image[minima[0] : minima[0] + sub_shape[0], minima[1] : minima[1] + sub_shape[1]]
|
||||||
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||||
bkg = np.sqrt(np.sum(sub_image**2) / sub_image.size) * subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2) / sub_image.size)
|
|
||||||
|
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
if np.abs(subtract_error) > 0:
|
|
||||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
|
if np.abs(subtract_error) > 0:
|
||||||
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
|
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
|
||||||
return n_data_array, n_error_array, headers, background
|
return n_data_array, n_error_array, headers, background, error_bkg
|
||||||
|
|
||||||
|
def subtract_bkg(data, error, mask, background, error_bkg):
|
||||||
|
assert data.ndim == 3, "Input data must have more than 1 image."
|
||||||
|
|
||||||
|
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||||
|
|
||||||
|
for i in range(data.shape[0]):
|
||||||
|
n_data_array[i][mask] = n_data_array[i][mask] - background[i]
|
||||||
|
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * background[i])] = 1e-3 * background[i]
|
||||||
|
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||||
|
|
||||||
|
return n_data_array, n_error_array, background, error_bkg
|
||||||
@@ -43,6 +43,7 @@ prototypes :
|
|||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from os.path import join as path_join
|
from os.path import join as path_join
|
||||||
|
|
||||||
|
|
||||||
import matplotlib.font_manager as fm
|
import matplotlib.font_manager as fm
|
||||||
import matplotlib.patheffects as pe
|
import matplotlib.patheffects as pe
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@@ -58,6 +59,7 @@ from mpl_toolkits.axes_grid1.anchored_artists import (
|
|||||||
AnchoredDirectionArrows,
|
AnchoredDirectionArrows,
|
||||||
AnchoredSizeBar,
|
AnchoredSizeBar,
|
||||||
)
|
)
|
||||||
|
|
||||||
from scipy.ndimage import zoom as sc_zoom
|
from scipy.ndimage import zoom as sc_zoom
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -65,6 +67,72 @@ try:
|
|||||||
except ImportError:
|
except ImportError:
|
||||||
from utils import princ_angle, rot2D, sci_not
|
from utils import princ_angle, rot2D, sci_not
|
||||||
|
|
||||||
|
def adaptive_binning(I_stokes, Q_stokes, U_stokes, Stokes_cov):
|
||||||
|
shape = I_stokes.shape
|
||||||
|
|
||||||
|
assert shape[0] == shape[1], "Only square images are supported"
|
||||||
|
assert shape[0] % 2 == 0, "Image size must be a power of 2"
|
||||||
|
|
||||||
|
n = int(np.log2(shape[0]))
|
||||||
|
bin_map = np.zeros(shape)
|
||||||
|
bin_num = 0
|
||||||
|
|
||||||
|
for level in range(n):
|
||||||
|
grid_size = 2**level
|
||||||
|
temp_I = I_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
|
||||||
|
temp_Q = Q_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
|
||||||
|
temp_U = U_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
|
||||||
|
temp_cov = Stokes_cov.reshape(3, 3, int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(3).sum(4)
|
||||||
|
temp_bin_map = bin_map.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
|
||||||
|
|
||||||
|
temp_P = (temp_Q**2 + temp_U**2)**0.5 / temp_I
|
||||||
|
temp_P_err = (1 / temp_I) * np.sqrt((temp_Q**2 * temp_cov[1,1,:,:] + temp_U**2 * temp_cov[2,2,:,:] + 2. * temp_Q * temp_U * temp_cov[1,2,:,:]) / (temp_Q**2 + temp_U**2) + \
|
||||||
|
((temp_Q / temp_I)**2 + (temp_U / temp_I)**2) * temp_cov[0,0,:,:] - \
|
||||||
|
2. * (temp_Q / temp_I) * temp_cov[0,1,:,:] - \
|
||||||
|
2. * (temp_U / temp_I) * temp_cov[0,2,:,:])
|
||||||
|
|
||||||
|
for i in range(int(shape[0]/grid_size)):
|
||||||
|
for j in range(int(shape[1]/grid_size)):
|
||||||
|
if (temp_P[i,j] / temp_P_err[i,j] > 3) and (temp_bin_map[i,j] == 0): # the default criterion is 3 sigma in P
|
||||||
|
bin_num += 1
|
||||||
|
bin_map[i*grid_size:(i+1)*grid_size,j*grid_size:(j+1)*grid_size] = bin_num
|
||||||
|
|
||||||
|
return bin_map, bin_num
|
||||||
|
|
||||||
|
def plot_quiver(ax, stkI, stkQ, stkU, stk_cov, poldata, pangdata, step_vec=1., scale_vec=2., optimal_binning=False):
|
||||||
|
if optimal_binning:
|
||||||
|
bin_map, bin_num = adaptive_binning(stkI, stkQ, stkU, stk_cov)
|
||||||
|
shape = stkI.shape
|
||||||
|
|
||||||
|
for i in range(1, bin_num+1):
|
||||||
|
bin = np.where(bin_map==i)
|
||||||
|
x_center, y_center = np.mean(bin, axis=1)
|
||||||
|
|
||||||
|
if not (20 < x_center < shape[0]-20 and 20 < y_center < shape[1]-20): # avoid plotting vectors on the edges of the image
|
||||||
|
continue
|
||||||
|
|
||||||
|
bin_I = np.sum(stkI[bin])
|
||||||
|
bin_Q = np.sum(stkQ[bin])
|
||||||
|
bin_U = np.sum(stkU[bin])
|
||||||
|
bin_cov = np.zeros((3,3))
|
||||||
|
for i in range(3):
|
||||||
|
for j in range(3):
|
||||||
|
bin_cov[i,j] = np.sum(stk_cov[i,j][bin])
|
||||||
|
|
||||||
|
poldata = np.sqrt(bin_Q**2 + bin_U**2) / bin_I
|
||||||
|
pangdata = 0.5 * np.arctan2(bin_U, bin_Q)
|
||||||
|
pangdata_err = (1 / (2. *(bin_Q**2 + bin_U**2))) * \
|
||||||
|
np.sqrt(bin_U**2 * bin_cov[1,1] + bin_Q**2 * bin_cov[2,2] - 2. * bin_Q * bin_U * bin_cov[1,2])
|
||||||
|
|
||||||
|
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata), poldata * np.sin(np.pi/2.+pangdata), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='white', edgecolor='white')
|
||||||
|
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata+pangdata_err), poldata * np.sin(np.pi/2.+pangdata+pangdata_err), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='black', edgecolor='black', ls='dashed')
|
||||||
|
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata-pangdata_err), poldata * np.sin(np.pi/2.+pangdata-pangdata_err), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='black', edgecolor='black', ls='dashed')
|
||||||
|
|
||||||
|
else:
|
||||||
|
X, Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||||
|
U, V = poldata*np.cos(np.pi/2.+pangdata*np.pi/180.), poldata*np.sin(np.pi/2.+pangdata*np.pi/180.)
|
||||||
|
ax.quiver(X[::step_vec, ::step_vec], Y[::step_vec, ::step_vec], U[::step_vec, ::step_vec], V[::step_vec, ::step_vec], units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.5, linewidth=0.75, color='w', edgecolor='k')
|
||||||
|
|
||||||
|
|
||||||
def plot_obs(data_array, headers, rectangle=None, savename=None, plots_folder="", **kwargs):
|
def plot_obs(data_array, headers, rectangle=None, savename=None, plots_folder="", **kwargs):
|
||||||
"""
|
"""
|
||||||
@@ -99,7 +167,10 @@ def plot_obs(data_array, headers, rectangle=None, savename=None, plots_folder=""
|
|||||||
plt.rcParams.update({"font.size": 10})
|
plt.rcParams.update({"font.size": 10})
|
||||||
nb_obs = np.max([np.sum([head["filtnam1"] == curr_pol for head in headers]) for curr_pol in ["POL0", "POL60", "POL120"]])
|
nb_obs = np.max([np.sum([head["filtnam1"] == curr_pol for head in headers]) for curr_pol in ["POL0", "POL60", "POL120"]])
|
||||||
shape = np.array((3, nb_obs))
|
shape = np.array((3, nb_obs))
|
||||||
fig, ax = plt.subplots(shape[0], shape[1], figsize=(3 * shape[1], 3 * shape[0]), dpi=200, layout="constrained", sharex=True, sharey=True)
|
|
||||||
|
fig, ax = plt.subplots(shape[0], shape[1], figsize=(3*shape[1], 3*shape[0]), dpi=200, layout='constrained',
|
||||||
|
sharex=True, sharey=True)
|
||||||
|
|
||||||
r_pol = dict(pol0=0, pol60=1, pol120=2)
|
r_pol = dict(pol0=0, pol60=1, pol120=2)
|
||||||
c_pol = dict(pol0=0, pol60=0, pol120=0)
|
c_pol = dict(pol0=0, pol60=0, pol120=0)
|
||||||
for i, (data, head) in enumerate(zip(data_array, headers)):
|
for i, (data, head) in enumerate(zip(data_array, headers)):
|
||||||
@@ -212,6 +283,7 @@ def plot_Stokes(Stokes, savename=None, plots_folder=""):
|
|||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def polarization_map(
|
def polarization_map(
|
||||||
Stokes,
|
Stokes,
|
||||||
data_mask=None,
|
data_mask=None,
|
||||||
@@ -224,7 +296,9 @@ def polarization_map(
|
|||||||
savename=None,
|
savename=None,
|
||||||
plots_folder="",
|
plots_folder="",
|
||||||
display="default",
|
display="default",
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Plots polarization map from Stokes HDUList.
|
Plots polarization map from Stokes HDUList.
|
||||||
----------
|
----------
|
||||||
@@ -275,11 +349,17 @@ def polarization_map(
|
|||||||
The figure and ax created for interactive contour maps.
|
The figure and ax created for interactive contour maps.
|
||||||
"""
|
"""
|
||||||
# Get data
|
# Get data
|
||||||
stkI = Stokes["I_stokes"].data.copy()
|
|
||||||
stk_cov = Stokes["IQU_cov_matrix"].data.copy()
|
optimal_binning = kwargs.get('optimal_binning', False)
|
||||||
pol = Stokes["Pol_deg_debiased"].data.copy()
|
|
||||||
pol_err = Stokes["Pol_deg_err"].data.copy()
|
stkI = Stokes['I_stokes'].data.copy()
|
||||||
pang = Stokes["Pol_ang"].data.copy()
|
stkQ = Stokes['Q_stokes'].data.copy()
|
||||||
|
stkU = Stokes['U_stokes'].data.copy()
|
||||||
|
stk_cov = Stokes['IQU_cov_matrix'].data.copy()
|
||||||
|
pol = Stokes['Pol_deg_debiased'].data.copy()
|
||||||
|
pol_err = Stokes['Pol_deg_err'].data.copy()
|
||||||
|
pang = Stokes['Pol_ang'].data.copy()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if data_mask is None:
|
if data_mask is None:
|
||||||
data_mask = Stokes["Data_mask"].data.astype(bool).copy()
|
data_mask = Stokes["Data_mask"].data.astype(bool).copy()
|
||||||
@@ -392,11 +472,13 @@ def polarization_map(
|
|||||||
# Display intensity error map
|
# Display intensity error map
|
||||||
display = "s_i"
|
display = "s_i"
|
||||||
if (SNRi > SNRi_cut).any():
|
if (SNRi > SNRi_cut).any():
|
||||||
|
|
||||||
vmin, vmax = (
|
vmin, vmax = (
|
||||||
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
||||||
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
||||||
)
|
)
|
||||||
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0)
|
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap="inferno", alpha=1.0)
|
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap="inferno", alpha=1.0)
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
@@ -467,28 +549,10 @@ def polarization_map(
|
|||||||
if step_vec == 0:
|
if step_vec == 0:
|
||||||
poldata[np.isfinite(poldata)] = 1.0 / 2.0
|
poldata[np.isfinite(poldata)] = 1.0 / 2.0
|
||||||
step_vec = 1
|
step_vec = 1
|
||||||
scale_vec = 2.0
|
scale_vec = 2.
|
||||||
X, Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
|
||||||
U, V = poldata * np.cos(np.pi / 2.0 + pangdata * np.pi / 180.0), poldata * np.sin(np.pi / 2.0 + pangdata * np.pi / 180.0)
|
plot_quiver(ax, stkI, stkQ, stkU, stk_cov, poldata, pangdata, step_vec=step_vec, scale_vec=scale_vec, optimal_binning=optimal_binning)
|
||||||
ax.quiver(
|
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
|
||||||
X[::step_vec, ::step_vec],
|
|
||||||
Y[::step_vec, ::step_vec],
|
|
||||||
U[::step_vec, ::step_vec],
|
|
||||||
V[::step_vec, ::step_vec],
|
|
||||||
units="xy",
|
|
||||||
angles="uv",
|
|
||||||
scale=1.0 / scale_vec,
|
|
||||||
scale_units="xy",
|
|
||||||
pivot="mid",
|
|
||||||
headwidth=0.0,
|
|
||||||
headlength=0.0,
|
|
||||||
headaxislength=0.0,
|
|
||||||
width=0.5,
|
|
||||||
linewidth=0.75,
|
|
||||||
color="w",
|
|
||||||
edgecolor="k",
|
|
||||||
)
|
|
||||||
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.25, sep=5, borderpad=0.25, frameon=False, size_vertical=0.005, color="w")
|
|
||||||
|
|
||||||
ax.add_artist(pol_sc)
|
ax.add_artist(pol_sc)
|
||||||
ax.add_artist(px_sc)
|
ax.add_artist(px_sc)
|
||||||
@@ -528,6 +592,7 @@ def polarization_map(
|
|||||||
# Display instrument FOV
|
# Display instrument FOV
|
||||||
if rectangle is not None:
|
if rectangle is not None:
|
||||||
x, y, width, height, angle, color = rectangle
|
x, y, width, height, angle, color = rectangle
|
||||||
|
|
||||||
x, y = np.array([x, y]) - np.array(stkI.shape) / 2.0
|
x, y = np.array([x, y]) - np.array(stkI.shape) / 2.0
|
||||||
ax.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
|
ax.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
|
||||||
|
|
||||||
@@ -590,6 +655,7 @@ class align_maps(object):
|
|||||||
)
|
)
|
||||||
|
|
||||||
plt.rcParams.update({"font.size": 10})
|
plt.rcParams.update({"font.size": 10})
|
||||||
|
|
||||||
fontprops = fm.FontProperties(size=16)
|
fontprops = fm.FontProperties(size=16)
|
||||||
self.fig_align = plt.figure(figsize=(20, 10))
|
self.fig_align = plt.figure(figsize=(20, 10))
|
||||||
self.map_ax = self.fig_align.add_subplot(121, projection=self.map_wcs)
|
self.map_ax = self.fig_align.add_subplot(121, projection=self.map_wcs)
|
||||||
|
|||||||
@@ -528,27 +528,25 @@ def get_error(
|
|||||||
# estimated to less than 3%
|
# estimated to less than 3%
|
||||||
err_flat = data * 0.03
|
err_flat = data * 0.03
|
||||||
|
|
||||||
if sub_type is None:
|
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
if (sub_type is None):
|
||||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_hist(
|
||||||
)
|
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||||
sub_type, subtract_error = "histogram ", str(int(subtract_error > 0.0))
|
sub_type, subtract_error = "histogram ", str(int(subtract_error > 0.0))
|
||||||
elif isinstance(sub_type, str):
|
elif isinstance(sub_type, str):
|
||||||
if sub_type.lower() in ["auto"]:
|
if sub_type.lower() in ['auto']:
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_fit(
|
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_fit(
|
||||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||||
)
|
|
||||||
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
else:
|
else:
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_hist(
|
||||||
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||||
)
|
|
||||||
sub_type, subtract_error = "histogram ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
sub_type, subtract_error = "histogram ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
elif isinstance(sub_type, tuple):
|
elif isinstance(sub_type, tuple):
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_mini(
|
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_mini(
|
||||||
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||||
)
|
|
||||||
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print("Warning: Invalid subtype.")
|
print("Warning: Invalid subtype.")
|
||||||
|
|
||||||
@@ -560,7 +558,7 @@ def get_error(
|
|||||||
n_error_array = np.sqrt(err_wav**2 + err_psf**2 + err_flat**2 + c_error_bkg**2)
|
n_error_array = np.sqrt(err_wav**2 + err_psf**2 + err_flat**2 + c_error_bkg**2)
|
||||||
|
|
||||||
if return_background:
|
if return_background:
|
||||||
return n_data_array, n_error_array, headers, background
|
return n_data_array, n_error_array, headers, background, error_bkg # return background error as well
|
||||||
else:
|
else:
|
||||||
return n_data_array, n_error_array, headers
|
return n_data_array, n_error_array, headers
|
||||||
|
|
||||||
@@ -693,7 +691,7 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
|
|||||||
|
|
||||||
|
|
||||||
def align_data(
|
def align_data(
|
||||||
data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False
|
data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False, optimal_binning=False
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Align images in data_array using cross correlation, and rescale them to
|
Align images in data_array using cross correlation, and rescale them to
|
||||||
@@ -772,12 +770,13 @@ def align_data(
|
|||||||
full_headers.append(headers[0])
|
full_headers.append(headers[0])
|
||||||
err_array = np.concatenate((error_array, [np.zeros(ref_data.shape)]), axis=0)
|
err_array = np.concatenate((error_array, [np.zeros(ref_data.shape)]), axis=0)
|
||||||
|
|
||||||
if data_mask is None:
|
if not optimal_binning:
|
||||||
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
if data_mask is None:
|
||||||
else:
|
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
||||||
full_array, err_array, data_mask, full_headers = crop_array(
|
else:
|
||||||
full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0
|
full_array, err_array, data_mask, full_headers = crop_array(
|
||||||
)
|
full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0
|
||||||
|
)
|
||||||
|
|
||||||
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
|
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
|
||||||
error_array = err_array[:-1]
|
error_array = err_array[:-1]
|
||||||
@@ -856,7 +855,9 @@ def align_data(
|
|||||||
headers[i].update(headers_wcs[i].to_header())
|
headers[i].update(headers_wcs[i].to_header())
|
||||||
|
|
||||||
data_mask = rescaled_mask.all(axis=0)
|
data_mask = rescaled_mask.all(axis=0)
|
||||||
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask, null_val=0.01 * background)
|
|
||||||
|
if not optimal_binning:
|
||||||
|
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask, null_val=0.01*background)
|
||||||
|
|
||||||
if return_shifts:
|
if return_shifts:
|
||||||
return data_array, error_array, headers, data_mask, shifts, errors
|
return data_array, error_array, headers, data_mask, shifts, errors
|
||||||
@@ -1847,4 +1848,4 @@ def rotate_data(data_array, error_array, data_mask, headers):
|
|||||||
for i in range(new_data_array.shape[0]):
|
for i in range(new_data_array.shape[0]):
|
||||||
new_data_array[i][new_data_array[i] < 0.0] = 0.0
|
new_data_array[i][new_data_array[i] < 0.0] = 0.0
|
||||||
|
|
||||||
return new_data_array, new_error_array, new_data_mask, new_headers
|
return new_data_array, new_error_array, new_data_mask, new_headers
|
||||||
Reference in New Issue
Block a user