fix the fits header handling
This commit is contained in:
@@ -49,8 +49,8 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
display_bkg = False
|
||||
|
||||
# Data binning
|
||||
pxsize = 2
|
||||
pxscale = "px" # pixel, arcsec or full
|
||||
pxsize = 0.05
|
||||
pxscale = "arcsec" # pixel, arcsec or full
|
||||
rebin_operation = "sum" # sum or average
|
||||
|
||||
# Alignement
|
||||
@@ -64,8 +64,8 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
|
||||
# Smoothing
|
||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
smoothing_FWHM = 2.0 # If None, no smoothing is done
|
||||
smoothing_scale = "px" # pixel or arcsec
|
||||
smoothing_FWHM = 0.1 # If None, no smoothing is done
|
||||
smoothing_scale = "arcsec" # pixel or arcsec
|
||||
|
||||
# Rotation
|
||||
rotate_North = True
|
||||
@@ -91,8 +91,8 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
|
||||
# Step 1:
|
||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||
outfiles = []
|
||||
if data_dir is None:
|
||||
outfiles = []
|
||||
if infiles is not None:
|
||||
prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str)
|
||||
obs_dir = "/".join(infiles[0].split("/")[:-1])
|
||||
@@ -161,7 +161,7 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
|
||||
# _background is the same as background, but for the optimal binning
|
||||
_background = None
|
||||
_, _error_array, _, _, _ = proj_red.get_error(_data_array, _headers, error_array=None, data_mask=_data_mask, sub_type=error_sub_type, subtract_error=False, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=True)
|
||||
_data_array, _error_array, _, = proj_red.get_error(_data_array, _headers, error_array=None, data_mask=_data_mask, sub_type=error_sub_type, subtract_error=False, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=False)
|
||||
_error_bkg = np.ones_like(_data_array) * error_bkg[:, 0, 0, np.newaxis, np.newaxis]
|
||||
_data_array, _error_array, _background, _ = subtract_bkg(_data_array, _error_array, _data_mask, background, _error_bkg)
|
||||
|
||||
@@ -176,57 +176,69 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
_background_error = np.array([np.array(np.sqrt((bkg-_background[np.array([h['filtnam1'] == head['filtnam1'] for h in _headers], dtype=bool)].mean())
|
||||
** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in _headers]))).reshape(1, 1) for bkg, head in zip(_background, _headers)])
|
||||
|
||||
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov = proj_red.compute_Stokes(_data_array, _error_array, _data_mask, _headers,
|
||||
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes = proj_red.compute_Stokes(_data_array, _error_array, _data_mask, _headers,
|
||||
FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
|
||||
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg = proj_red.compute_Stokes(_background, _background_error, np.array(True).reshape(1, 1), _headers,
|
||||
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg = proj_red.compute_Stokes(_background, _background_error, np.array(True).reshape(1, 1), _headers,
|
||||
FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
||||
|
||||
# Step 5: Compute polarimetric parameters (polarization degree and angle).
|
||||
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _headers)
|
||||
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _headers)
|
||||
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes)
|
||||
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg)
|
||||
|
||||
# Step 6: Save image to FITS.
|
||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||
_Stokes_test = proj_fits.save_Stokes(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P,
|
||||
_headers, _data_mask, figname, data_folder=data_folder, return_hdul=True)
|
||||
_Stokes_hdul = proj_fits.save_Stokes(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P,
|
||||
_header_stokes, _data_mask, figname, data_folder=data_folder, return_hdul=True)
|
||||
|
||||
# Step 6:
|
||||
_data_mask = _Stokes_test['data_mask'].data.astype(bool)
|
||||
print(_data_array.shape, _data_mask.shape)
|
||||
print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(_headers[0]['photplam'], *sci_not(
|
||||
_Stokes_test[0].data[_data_mask].sum()*_headers[0]['photflam'], np.sqrt(_Stokes_test[3].data[0, 0][_data_mask].sum())*_headers[0]['photflam'], 2, out=int)))
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(_headers[0]['p_int']*100., np.ceil(_headers[0]['p_int_err']*1000.)/10.))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(_headers[0]['pa_int']), princ_angle(np.ceil(_headers[0]['pa_int_err']*10.)/10.)))
|
||||
_data_mask = _Stokes_hdul['data_mask'].data.astype(bool)
|
||||
print(
|
||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
_header_stokes["PHOTPLAM"],
|
||||
*sci_not(
|
||||
_Stokes_hdul[0].data[_data_mask].sum() * _header_stokes["PHOTFLAM"],
|
||||
np.sqrt(_Stokes_hdul[3].data[0, 0][_data_mask].sum()) * _header_stokes["PHOTFLAM"],
|
||||
2,
|
||||
out=int,
|
||||
),
|
||||
)
|
||||
)
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(_header_stokes["p_int"] * 100.0, np.ceil(_header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(_header_stokes["pa_int"]), princ_angle(np.ceil(_header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||
# Background values
|
||||
print("F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(_headers[0]['photplam'], *sci_not(
|
||||
_I_bkg[0, 0]*_headers[0]['photflam'], np.sqrt(_S_cov_bkg[0, 0][0, 0])*_headers[0]['photflam'], 2, out=int)))
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0]*100., np.ceil(_s_P_bkg[0, 0]*1000.)/10.))
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0]*10.)/10.)))
|
||||
print(
|
||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
_header_stokes["PHOTFLAM"], *sci_not(_I_bkg[0, 0] * _header_stokes["PHOTFLAM"], np.sqrt(_S_cov_bkg[0, 0][0, 0]) * _header_stokes["PHOTFLAM"], 2, out=int)
|
||||
)
|
||||
)
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0] * 100.0, np.ceil(_s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||
|
||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||
if pxscale.lower() not in ['full', 'integrate'] and not interactive:
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
||||
step_vec=step_vec, vec_scale=scale_vec, savename="_".join([figname]), plots_folder=plots_folder, **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "I"]), plots_folder=plots_folder, display='Intensity', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "P"]), plots_folder=plots_folder, display='Pol_deg', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "PA"]), plots_folder=plots_folder, display='Pol_ang', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "I_err"]), plots_folder=plots_folder, display='I_err', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "SNRi"]), plots_folder=plots_folder, display='SNRi', **options)
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=scale_vec, savename="_".join([figname, "SNRp"]), plots_folder=plots_folder, display='SNRp', **options)
|
||||
elif not interactive:
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_test), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
|
||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
|
||||
savename=figname, plots_folder=plots_folder, display='integrate', **options)
|
||||
elif pxscale.lower() not in ['full', 'integrate']:
|
||||
proj_plots.pol_map(_Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
proj_plots.pol_map(_Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
|
||||
else:
|
||||
options = {'optimize': optimize, 'optimal_binning': False}
|
||||
@@ -290,27 +302,27 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(
|
||||
1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
||||
|
||||
# Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate_North:
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None)
|
||||
|
||||
# Compute polarimetric parameters (polarization degree and angle).
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
|
||||
|
||||
# Step 4:
|
||||
# Save image to FITS.
|
||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||
Stokes_hdul = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
|
||||
headers, data_mask, figname, data_folder=data_folder, return_hdul=True)
|
||||
header_stokes, data_mask, figname, data_folder=data_folder, return_hdul=True)
|
||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||
|
||||
# Step 5:
|
||||
@@ -320,19 +332,31 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
||||
stokescrop.crop()
|
||||
stokescrop.write_to("/".join([data_folder, figname+".fits"]))
|
||||
Stokes_hdul, headers = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||
Stokes_hdul, header_stokes = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||
|
||||
data_mask = Stokes_hdul['data_mask'].data.astype(bool)
|
||||
print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *sci_not(
|
||||
Stokes_hdul[0].data[data_mask].sum()*headers[0]['photflam'], np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum())*headers[0]['photflam'], 2, out=int)))
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]['p_int']*100., np.ceil(headers[0]['p_int_err']*1000.)/10.))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(headers[0]['pa_int']), princ_angle(np.ceil(headers[0]['pa_int_err']*10.)/10.)))
|
||||
print(
|
||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
header_stokes["PHOTPLAM"],
|
||||
*sci_not(
|
||||
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
|
||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
|
||||
2,
|
||||
out=int,
|
||||
),
|
||||
)
|
||||
)
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||
# Background values
|
||||
print("F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *sci_not(
|
||||
I_bkg[0, 0]*headers[0]['photflam'], np.sqrt(S_cov_bkg[0, 0][0, 0])*headers[0]['photflam'], 2, out=int)))
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0]*100., np.ceil(s_P_bkg[0, 0]*1000.)/10.))
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0]*10.)/10.)))
|
||||
print(
|
||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
header_stokes["PHOTPLAM"], *sci_not(I_bkg[0, 0] * header_stokes["PHOTPLAM"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["PHOTPLAM"], 2, out=int)
|
||||
)
|
||||
)
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||
if pxscale.lower() not in ['full', 'integrate'] and not interactive:
|
||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
||||
@@ -375,6 +399,7 @@ if __name__ == "__main__":
|
||||
help='output directory path for the data products', type=str, default="./data")
|
||||
parser.add_argument('-c', '--crop', action='store_true', required=False, help='whether to crop the analysis region')
|
||||
parser.add_argument('-i', '--interactive', action='store_true', required=False, help='whether to output to the interactive analysis tool')
|
||||
|
||||
args = parser.parse_args()
|
||||
exitcode = main(target=args.target, proposal_id=args.proposal_id, data_dir=args.data_dir, infiles=args.files,
|
||||
output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
|
||||
|
||||
@@ -102,10 +102,14 @@ def adaptive_binning(I_stokes, Q_stokes, U_stokes, Stokes_cov):
|
||||
def plot_quiver(ax, stkI, stkQ, stkU, stk_cov, poldata, pangdata, step_vec=1., scale_vec=2., optimal_binning=False):
|
||||
if optimal_binning:
|
||||
bin_map, bin_num = adaptive_binning(stkI, stkQ, stkU, stk_cov)
|
||||
shape = stkI.shape
|
||||
|
||||
for i in range(1, bin_num+1):
|
||||
bin = np.where(bin_map==i)
|
||||
x_center, y_center = np.mean(bin, axis=1)
|
||||
|
||||
if not (20 < x_center < shape[0]-20 and 20 < y_center < shape[1]-20): # avoid plotting vectors on the edges of the image
|
||||
continue
|
||||
|
||||
bin_I = np.sum(stkI[bin])
|
||||
bin_Q = np.sum(stkQ[bin])
|
||||
|
||||
Reference in New Issue
Block a user