16 Commits

Author SHA1 Message Date
d505ef6f8a merge CZ fork to testing, prepare pipeline for clenup and fix 2024-07-17 16:44:06 +02:00
sugar_jo
2d0d8105be fix the fits header handling 2024-07-17 12:03:43 +08:00
sugar_jo
c41526c0a6 disable cropping in align_data when optimal_binning 2024-07-16 22:13:39 +08:00
sugar_jo
a72b799713 Update background.py 2024-07-16 22:06:46 +08:00
sugar_jo
fa4dce398f change some variable names 2024-07-16 21:59:22 +08:00
sugar_jo
3c8ca6ac1a Merge branch 'test' into main 2024-07-16 21:39:25 +08:00
sugar_jo
62aef1b1c4 add optimal_binning to plotting 2024-07-15 19:39:21 +08:00
sugar_jo
8e5f439259 add subtract_bkg funcition
Allow subtracting the bkg simpler
2024-07-14 15:46:22 +08:00
163f37d5b2 Merge branch 'testing'
correction for observation orientation and plots improvments
2024-07-10 16:27:34 +02:00
af8741fbc5 Merge branch 'main' of git.unistra.fr:t.barnouin/FOC_Reduction into main
add Combined.py to all repo
2024-07-04 17:10:29 +02:00
8c88d6424b Merge branch 'main' of git.tibeuleu.xyz:Tibeuleu/FOC_Reduction into main
add Combine.py on all remote repo
2024-07-04 17:09:01 +02:00
576c2638f3 Merge pull request 'add observation combinaison' (#1) from testing into main
Reviewed-on: #1
2024-07-04 12:36:27 +00:00
Thibault Barnouin
c584a56b24 Merge branch 'testing' into 'main'
add observation combinaison

See merge request t.barnouin/FOC_Reduction!1
2024-07-04 12:32:57 +00:00
sugar_jo
a4e8f51c50 Update reduction.py 2024-06-30 11:06:26 +08:00
sugar_jo
b176e7a56e Update plots.py 2024-06-28 17:33:05 +08:00
sugar_jo
69b3937e9c Update reduction.py 2024-06-27 20:46:42 +08:00
4 changed files with 724 additions and 352 deletions

View File

@@ -36,12 +36,12 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# Background estimation
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 2.0
subtract_error = 1.0
display_bkg = False
# Data binning
pxsize = 2
pxscale = "px" # pixel, arcsec or full
pxsize = 0.05
pxscale = "arcsec" # pixel, arcsec or full
rebin_operation = "sum" # sum or average
# Alignement
@@ -54,8 +54,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# Smoothing
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = 1.50 # If None, no smoothing is done
smoothing_scale = "px" # pixel or arcsec
smoothing_FWHM = 0.10 # If None, no smoothing is done
smoothing_scale = "arcsec" # pixel or arcsec
# Rotation
rotate_North = True
@@ -67,6 +67,16 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
scale_vec = 5
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
# Adaptive binning
# in order to perfrom optimal binning, there are several steps to follow:
# 1. Load the data again and preserve the full images
# 2. Skip the cropping step but use the same error and background estimation
# 3. Use the same alignment as the routine
# 4. Skip the rebinning step
# 5. Calulate the Stokes parameters without smoothing
optimal_binning = False
optimize = False
# Pipeline start
# Step 1:
@@ -111,297 +121,592 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
if align_center is None:
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
# Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
)
data_mask = np.ones(data_array[0].shape, dtype=bool)
if optimal_binning:
from lib.background import subtract_bkg
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve:
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
options = {"optimize": optimize, "optimal_binning": True}
# Estimate error from data background, estimated from sub-image of desired sub_shape.
background = None
data_array, error_array, headers, background = proj_red.get_error(
data_array,
headers,
error_array,
data_mask=data_mask,
sub_type=error_sub_type,
subtract_error=subtract_error,
display=display_bkg,
savename="_".join([figname, "errors"]),
plots_folder=plots_folder,
return_background=True,
)
# Step 1: Load the data again and preserve the full images
_data_array, _headers = deepcopy(data_array), deepcopy(headers) # Preserve full images
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
# Rotate data to have same orientation
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
if rotate_data:
ang = np.mean([head["ORIENTAT"] for head in headers])
for head in headers:
head["ORIENTAT"] -= ang
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers)
if display_data:
# Step 2: Skip the cropping step but use the same error and background estimation (I don't understand why this is wrong)
data_array, error_array, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
)
data_mask = np.ones(data_array[0].shape, dtype=bool)
background = None
_, _, _, background, error_bkg = proj_red.get_error(
data_array,
headers,
error_array,
data_mask=data_mask,
sub_type=error_sub_type,
subtract_error=subtract_error,
display=display_bkg,
savename="_".join([figname, "errors"]),
plots_folder=plots_folder,
return_background=True,
)
# _background is the same as background, but for the optimal binning
_background = None
_data_array, _error_array, _ = proj_red.get_error(
_data_array,
_headers,
error_array=None,
data_mask=_data_mask,
sub_type=error_sub_type,
subtract_error=False,
display=display_bkg,
savename="_".join([figname, "errors"]),
plots_folder=plots_folder,
return_background=False,
)
_error_bkg = np.ones_like(_data_array) * error_bkg[:, 0, 0, np.newaxis, np.newaxis]
_data_array, _error_array, _background, _ = subtract_bkg(_data_array, _error_array, _data_mask, background, _error_bkg)
# Step 3: Align and rescale images with oversampling. (has to disable croping in align_data function)
_data_array, _error_array, _headers, _, shifts, error_shifts = proj_red.align_data(
_data_array,
_headers,
error_array=_error_array,
background=_background,
upsample_factor=10,
ref_center=align_center,
return_shifts=True,
optimal_binning=True,
)
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
# Step 4: Compute Stokes I, Q, U
_background = np.array([np.array(bkg).reshape(1, 1) for bkg in _background])
_background_error = np.array(
[
np.array(
np.sqrt(
(bkg - _background[np.array([h["filtnam1"] == head["filtnam1"] for h in _headers], dtype=bool)].mean()) ** 2
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in _headers])
)
).reshape(1, 1)
for bkg, head in zip(_background, _headers)
]
)
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes = proj_red.compute_Stokes(
_data_array, _error_array, _data_mask, _headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
)
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg = proj_red.compute_Stokes(
_background,
_background_error,
np.array(True).reshape(1, 1),
_headers,
FWHM=None,
scale=smoothing_scale,
smoothing=smoothing_function,
transmitcorr=False,
)
# Step 5: Compute polarimetric parameters (polarization degree and angle).
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes)
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg)
# Step 6: Save image to FITS.
figname = "_".join([figname, figtype]) if figtype != "" else figname
_Stokes_hdul = proj_fits.save_Stokes(
_I_stokes,
_Q_stokes,
_U_stokes,
_Stokes_cov,
_P,
_debiased_P,
_s_P,
_s_P_P,
_PA,
_s_PA,
_s_PA_P,
_header_stokes,
_data_mask,
figname,
data_folder=data_folder,
return_hdul=True,
)
# Step 6:
_data_mask = _Stokes_hdul["data_mask"].data.astype(bool)
print(
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
_header_stokes["PHOTPLAM"],
*sci_not(
_Stokes_hdul[0].data[_data_mask].sum() * _header_stokes["PHOTFLAM"],
np.sqrt(_Stokes_hdul[3].data[0, 0][_data_mask].sum()) * _header_stokes["PHOTFLAM"],
2,
out=int,
),
)
)
print("P_int = {0:.1f} ± {1:.1f} %".format(_header_stokes["p_int"] * 100.0, np.ceil(_header_stokes["sP_int"] * 1000.0) / 10.0))
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(_header_stokes["pa_int"]), princ_angle(np.ceil(_header_stokes["sPA_int"] * 10.0) / 10.0)))
# Background values
print(
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
_header_stokes["PHOTFLAM"],
*sci_not(_I_bkg[0, 0] * _header_stokes["PHOTFLAM"], np.sqrt(_S_cov_bkg[0, 0][0, 0]) * _header_stokes["PHOTFLAM"], 2, out=int),
)
)
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0] * 100.0, np.ceil(_s_P_bkg[0, 0] * 1000.0) / 10.0))
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0] * 10.0) / 10.0)))
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
if pxscale.lower() not in ["full", "integrate"] and not interactive:
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname]),
plots_folder=plots_folder,
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "I"]),
plots_folder=plots_folder,
display="Intensity",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "P_flux"]),
plots_folder=plots_folder,
display="Pol_Flux",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "P"]),
plots_folder=plots_folder,
display="Pol_deg",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "PA"]),
plots_folder=plots_folder,
display="Pol_ang",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "I_err"]),
plots_folder=plots_folder,
display="I_err",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "P_err"]),
plots_folder=plots_folder,
display="Pol_deg_err",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "SNRi"]),
plots_folder=plots_folder,
display="SNRi",
**options,
)
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
vec_scale=scale_vec,
savename="_".join([figname, "SNRp"]),
plots_folder=plots_folder,
display="SNRp",
**options,
)
elif not interactive:
proj_plots.polarization_map(
deepcopy(_Stokes_hdul),
_data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
savename=figname,
plots_folder=plots_folder,
display="integrate",
**options,
)
elif pxscale.lower() not in ["full", "integrate"]:
proj_plots.pol_map(_Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
else:
options = {"optimize": optimize, "optimal_binning": False}
# Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
)
data_mask = np.ones(data_array[0].shape, dtype=bool)
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve:
data_array = proj_red.deconvolve_array(
data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo
)
# Estimate error from data background, estimated from sub-image of desired sub_shape.
background = None
data_array, error_array, headers, background, error_bkg = proj_red.get_error(
data_array,
headers,
error_array,
data_mask=data_mask,
sub_type=error_sub_type,
subtract_error=subtract_error,
display=display_bkg,
savename="_".join([figname, "errors"]),
plots_folder=plots_folder,
return_background=True,
)
# Align and rescale images with oversampling.
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True
)
if display_align:
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
proj_plots.plot_obs(
data_array,
headers,
savename="_".join([figname, "rotate_data"]),
savename="_".join([figname, str(align_center)]),
plots_folder=plots_folder,
norm=LogNorm(
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
),
)
# Align and rescale images with oversampling.
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
data_array,
headers,
error_array=error_array,
data_mask=data_mask,
background=background,
upsample_factor=10,
ref_center=align_center,
return_shifts=True,
)
# Rebin data to desired pixel size.
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
)
if display_align:
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
proj_plots.plot_obs(
data_array,
headers,
savename="_".join([figname, str(align_center)]),
plots_folder=plots_folder,
norm=LogNorm(vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]),
)
# Rebin data to desired pixel size.
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
)
# Plot array for checking output
if display_data and pxscale.lower() not in ["full", "integrate"]:
proj_plots.plot_obs(
data_array,
headers,
savename="_".join([figname, "rebin"]),
plots_folder=plots_folder,
norm=LogNorm(vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]),
)
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
background_error = np.array(
[
np.array(
np.sqrt(
(bkg - background[np.array([h["filtnam1"] == head["filtnam1"] for h in headers], dtype=bool)].mean()) ** 2
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in headers])
# Rotate data to have same orientation
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
if rotate_data:
ang = np.mean([head["ORIENTAT"] for head in headers])
for head in headers:
head["ORIENTAT"] -= ang
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers)
if display_data:
proj_plots.plot_obs(
data_array,
headers,
savename="_".join([figname, "rotate_data"]),
plots_folder=plots_folder,
norm=LogNorm(
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
),
)
).reshape(1, 1)
for bkg, head in zip(background, headers)
]
)
# Step 2:
# Compute Stokes I, Q, U with smoothed polarized images
# SMOOTHING DISCUSSION :
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
)
# Plot array for checking output
if display_data and pxscale.lower() not in ["full", "integrate"]:
proj_plots.plot_obs(
data_array,
headers,
savename="_".join([figname, "rebin"]),
plots_folder=plots_folder,
norm=LogNorm(
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
),
)
# Step 3:
# Rotate images to have North up
if rotate_North:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
background_error = np.array(
[
np.array(
np.sqrt(
(bkg - background[np.array([h["filtnam1"] == head["filtnam1"] for h in headers], dtype=bool)].mean()) ** 2
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in headers])
)
).reshape(1, 1)
for bkg, head in zip(background, headers)
]
)
# Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
# Step 2:
# Compute Stokes I, Q, U with smoothed polarized images
# SMOOTHING DISCUSSION :
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
background,
background_error,
np.array(True).reshape(1, 1),
headers,
FWHM=None,
scale=smoothing_scale,
smoothing=smoothing_function,
transmitcorr=False,
)
# Step 4:
# Save image to FITS.
figname = "_".join([figname, figtype]) if figtype != "" else figname
Stokes_hdul = proj_fits.save_Stokes(
I_stokes,
Q_stokes,
U_stokes,
Stokes_cov,
P,
debiased_P,
s_P,
s_P_P,
PA,
s_PA,
s_PA_P,
header_stokes,
data_mask,
figname,
data_folder=data_folder,
return_hdul=True,
)
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
# Step 3:
# Rotate images to have North up
if rotate_North:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
)
# Step 5:
# crop to desired region of interest (roi)
if crop:
figname += "_crop"
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
stokescrop.crop()
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
Stokes_hdul, header_stokes = stokescrop.hdul_crop, stokescrop.hdul_crop[0].header
# Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
# Step 4:
# Save image to FITS.
figname = "_".join([figname, figtype]) if figtype != "" else figname
Stokes_hdul = proj_fits.save_Stokes(
I_stokes,
Q_stokes,
U_stokes,
Stokes_cov,
P,
debiased_P,
s_P,
s_P_P,
PA,
s_PA,
s_PA_P,
header_stokes,
data_mask,
figname,
data_folder=data_folder,
return_hdul=True,
)
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
print(
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
header_stokes["PHOTPLAM"],
*sci_not(
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
2,
out=int,
),
# Step 5:
# crop to desired region of interest (roi)
if crop:
figname += "_crop"
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
stokescrop.crop()
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
Stokes_hdul, header_stokes = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
print(
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
header_stokes["PHOTPLAM"],
*sci_not(
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
2,
out=int,
),
)
)
)
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
# Background values
print(
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
header_stokes["photplam"], *sci_not(I_bkg[0, 0] * header_stokes["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["photflam"], 2, out=int)
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
# Background values
print(
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
header_stokes["PHOTPLAM"],
*sci_not(I_bkg[0, 0] * header_stokes["PHOTPLAM"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["PHOTPLAM"], 2, out=int),
)
)
)
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
if pxscale.lower() not in ["full", "integrate"] and not interactive:
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname]),
plots_folder=plots_folder,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "I"]),
plots_folder=plots_folder,
display="Intensity",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "P_flux"]),
plots_folder=plots_folder,
display="Pol_Flux",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "P"]),
plots_folder=plots_folder,
display="Pol_deg",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "PA"]),
plots_folder=plots_folder,
display="Pol_ang",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "I_err"]),
plots_folder=plots_folder,
display="I_err",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "P_err"]),
plots_folder=plots_folder,
display="Pol_deg_err",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "SNRi"]),
plots_folder=plots_folder,
display="SNRi",
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "SNRp"]),
plots_folder=plots_folder,
display="SNRp",
)
elif not interactive:
proj_plots.polarization_map(
deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=figname, plots_folder=plots_folder, display="integrate"
)
elif pxscale.lower() not in ["full", "integrate"]:
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, scale_vec=scale_vec, flux_lim=flux_lim)
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
if pxscale.lower() not in ["full", "integrate"] and not interactive:
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname]),
plots_folder=plots_folder,
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "I"]),
plots_folder=plots_folder,
display="Intensity",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vece=scale_vec,
savename="_".join([figname, "P_flux"]),
plots_folder=plots_folder,
display="Pol_Flux",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "P"]),
plots_folder=plots_folder,
display="Pol_deg",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "PA"]),
plots_folder=plots_folder,
display="Pol_ang",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "I_err"]),
plots_folder=plots_folder,
display="I_err",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "P_err"]),
plots_folder=plots_folder,
display="Pol_deg_err",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "SNRi"]),
plots_folder=plots_folder,
display="SNRi",
**options,
)
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([figname, "SNRp"]),
plots_folder=plots_folder,
display="SNRp",
**options,
)
elif not interactive:
proj_plots.polarization_map(
deepcopy(Stokes_hdul),
data_mask,
SNRp_cut=SNRp_cut,
SNRi_cut=SNRi_cut,
savename=figname,
plots_folder=plots_folder,
display="integrate",
**options,
)
elif pxscale.lower() not in ["full", "integrate"]:
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
return outfiles

View File

@@ -251,23 +251,18 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
weights = 1 / chi2**2
weights /= weights.sum()
bkg = np.sum(weights * (coeff[:, 1] + np.abs(coeff[:, 2]) * subtract_error))
bkg = np.sum(weights*(coeff[:, 1]+np.abs(coeff[:, 2]) * subtract_error))
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
# Substract background
if np.abs(subtract_error) > 0:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
background[i] = bkg
if np.abs(subtract_error) > 0:
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
if display:
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
return n_data_array, n_error_array, headers, background
return n_data_array, n_error_array, headers, background, error_bkg
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
@@ -360,23 +355,19 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
# popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
coeff.append(popt)
bkg = popt[1] + np.abs(popt[2]) * subtract_error
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
# Substract background
if np.abs(subtract_error) > 0:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
background[i] = bkg
if np.abs(subtract_error) > 0:
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
if display:
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
return n_data_array, n_error_array, headers, background
return n_data_array, n_error_array, headers, background, error_bkg
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
@@ -458,19 +449,28 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True
# Compute error : root mean square of the background
sub_image = image[minima[0] : minima[0] + sub_shape[0], minima[1] : minima[1] + sub_shape[1]]
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
bkg = np.sqrt(np.sum(sub_image**2) / sub_image.size) * subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2) / sub_image.size)
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i] ** 2 + error_bkg[i] ** 2)
# Substract background
if np.abs(subtract_error) > 0:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * bkg)] = 1e-3 * bkg
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
background[i] = bkg
if np.abs(subtract_error) > 0:
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
if display:
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
return n_data_array, n_error_array, headers, background
return n_data_array, n_error_array, headers, background, error_bkg
def subtract_bkg(data, error, mask, background, error_bkg):
assert data.ndim == 3, "Input data must have more than 1 image."
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
for i in range(data.shape[0]):
n_data_array[i][mask] = n_data_array[i][mask] - background[i]
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3 * background[i])] = 1e-3 * background[i]
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
return n_data_array, n_error_array, background, error_bkg

View File

@@ -43,6 +43,7 @@ prototypes :
from copy import deepcopy
from os.path import join as path_join
import matplotlib.font_manager as fm
import matplotlib.patheffects as pe
import matplotlib.pyplot as plt
@@ -58,6 +59,7 @@ from mpl_toolkits.axes_grid1.anchored_artists import (
AnchoredDirectionArrows,
AnchoredSizeBar,
)
from scipy.ndimage import zoom as sc_zoom
try:
@@ -65,6 +67,72 @@ try:
except ImportError:
from utils import princ_angle, rot2D, sci_not
def adaptive_binning(I_stokes, Q_stokes, U_stokes, Stokes_cov):
shape = I_stokes.shape
assert shape[0] == shape[1], "Only square images are supported"
assert shape[0] % 2 == 0, "Image size must be a power of 2"
n = int(np.log2(shape[0]))
bin_map = np.zeros(shape)
bin_num = 0
for level in range(n):
grid_size = 2**level
temp_I = I_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
temp_Q = Q_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
temp_U = U_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
temp_cov = Stokes_cov.reshape(3, 3, int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(3).sum(4)
temp_bin_map = bin_map.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2)
temp_P = (temp_Q**2 + temp_U**2)**0.5 / temp_I
temp_P_err = (1 / temp_I) * np.sqrt((temp_Q**2 * temp_cov[1,1,:,:] + temp_U**2 * temp_cov[2,2,:,:] + 2. * temp_Q * temp_U * temp_cov[1,2,:,:]) / (temp_Q**2 + temp_U**2) + \
((temp_Q / temp_I)**2 + (temp_U / temp_I)**2) * temp_cov[0,0,:,:] - \
2. * (temp_Q / temp_I) * temp_cov[0,1,:,:] - \
2. * (temp_U / temp_I) * temp_cov[0,2,:,:])
for i in range(int(shape[0]/grid_size)):
for j in range(int(shape[1]/grid_size)):
if (temp_P[i,j] / temp_P_err[i,j] > 3) and (temp_bin_map[i,j] == 0): # the default criterion is 3 sigma in P
bin_num += 1
bin_map[i*grid_size:(i+1)*grid_size,j*grid_size:(j+1)*grid_size] = bin_num
return bin_map, bin_num
def plot_quiver(ax, stkI, stkQ, stkU, stk_cov, poldata, pangdata, step_vec=1., scale_vec=2., optimal_binning=False):
if optimal_binning:
bin_map, bin_num = adaptive_binning(stkI, stkQ, stkU, stk_cov)
shape = stkI.shape
for i in range(1, bin_num+1):
bin = np.where(bin_map==i)
x_center, y_center = np.mean(bin, axis=1)
if not (20 < x_center < shape[0]-20 and 20 < y_center < shape[1]-20): # avoid plotting vectors on the edges of the image
continue
bin_I = np.sum(stkI[bin])
bin_Q = np.sum(stkQ[bin])
bin_U = np.sum(stkU[bin])
bin_cov = np.zeros((3,3))
for i in range(3):
for j in range(3):
bin_cov[i,j] = np.sum(stk_cov[i,j][bin])
poldata = np.sqrt(bin_Q**2 + bin_U**2) / bin_I
pangdata = 0.5 * np.arctan2(bin_U, bin_Q)
pangdata_err = (1 / (2. *(bin_Q**2 + bin_U**2))) * \
np.sqrt(bin_U**2 * bin_cov[1,1] + bin_Q**2 * bin_cov[2,2] - 2. * bin_Q * bin_U * bin_cov[1,2])
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata), poldata * np.sin(np.pi/2.+pangdata), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='white', edgecolor='white')
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata+pangdata_err), poldata * np.sin(np.pi/2.+pangdata+pangdata_err), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='black', edgecolor='black', ls='dashed')
ax.quiver(y_center, x_center, poldata * np.cos(np.pi/2.+pangdata-pangdata_err), poldata * np.sin(np.pi/2.+pangdata-pangdata_err), units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, linewidth=0.5, color='black', edgecolor='black', ls='dashed')
else:
X, Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
U, V = poldata*np.cos(np.pi/2.+pangdata*np.pi/180.), poldata*np.sin(np.pi/2.+pangdata*np.pi/180.)
ax.quiver(X[::step_vec, ::step_vec], Y[::step_vec, ::step_vec], U[::step_vec, ::step_vec], V[::step_vec, ::step_vec], units='xy', angles='uv', scale=1./scale_vec, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.5, linewidth=0.75, color='w', edgecolor='k')
def plot_obs(data_array, headers, rectangle=None, savename=None, plots_folder="", **kwargs):
"""
@@ -99,7 +167,10 @@ def plot_obs(data_array, headers, rectangle=None, savename=None, plots_folder=""
plt.rcParams.update({"font.size": 10})
nb_obs = np.max([np.sum([head["filtnam1"] == curr_pol for head in headers]) for curr_pol in ["POL0", "POL60", "POL120"]])
shape = np.array((3, nb_obs))
fig, ax = plt.subplots(shape[0], shape[1], figsize=(3 * shape[1], 3 * shape[0]), dpi=200, layout="constrained", sharex=True, sharey=True)
fig, ax = plt.subplots(shape[0], shape[1], figsize=(3*shape[1], 3*shape[0]), dpi=200, layout='constrained',
sharex=True, sharey=True)
r_pol = dict(pol0=0, pol60=1, pol120=2)
c_pol = dict(pol0=0, pol60=0, pol120=0)
for i, (data, head) in enumerate(zip(data_array, headers)):
@@ -212,6 +283,7 @@ def plot_Stokes(Stokes, savename=None, plots_folder=""):
return 0
def polarization_map(
Stokes,
data_mask=None,
@@ -224,7 +296,9 @@ def polarization_map(
savename=None,
plots_folder="",
display="default",
**kwargs
):
"""
Plots polarization map from Stokes HDUList.
----------
@@ -275,11 +349,17 @@ def polarization_map(
The figure and ax created for interactive contour maps.
"""
# Get data
stkI = Stokes["I_stokes"].data.copy()
stk_cov = Stokes["IQU_cov_matrix"].data.copy()
pol = Stokes["Pol_deg_debiased"].data.copy()
pol_err = Stokes["Pol_deg_err"].data.copy()
pang = Stokes["Pol_ang"].data.copy()
optimal_binning = kwargs.get('optimal_binning', False)
stkI = Stokes['I_stokes'].data.copy()
stkQ = Stokes['Q_stokes'].data.copy()
stkU = Stokes['U_stokes'].data.copy()
stk_cov = Stokes['IQU_cov_matrix'].data.copy()
pol = Stokes['Pol_deg_debiased'].data.copy()
pol_err = Stokes['Pol_deg_err'].data.copy()
pang = Stokes['Pol_ang'].data.copy()
try:
if data_mask is None:
data_mask = Stokes["Data_mask"].data.astype(bool).copy()
@@ -392,11 +472,13 @@ def polarization_map(
# Display intensity error map
display = "s_i"
if (SNRi > SNRi_cut).any():
vmin, vmax = (
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
)
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0)
else:
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap="inferno", alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
@@ -467,28 +549,10 @@ def polarization_map(
if step_vec == 0:
poldata[np.isfinite(poldata)] = 1.0 / 2.0
step_vec = 1
scale_vec = 2.0
X, Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
U, V = poldata * np.cos(np.pi / 2.0 + pangdata * np.pi / 180.0), poldata * np.sin(np.pi / 2.0 + pangdata * np.pi / 180.0)
ax.quiver(
X[::step_vec, ::step_vec],
Y[::step_vec, ::step_vec],
U[::step_vec, ::step_vec],
V[::step_vec, ::step_vec],
units="xy",
angles="uv",
scale=1.0 / scale_vec,
scale_units="xy",
pivot="mid",
headwidth=0.0,
headlength=0.0,
headaxislength=0.0,
width=0.5,
linewidth=0.75,
color="w",
edgecolor="k",
)
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.25, sep=5, borderpad=0.25, frameon=False, size_vertical=0.005, color="w")
scale_vec = 2.
plot_quiver(ax, stkI, stkQ, stkU, stk_cov, poldata, pangdata, step_vec=step_vec, scale_vec=scale_vec, optimal_binning=optimal_binning)
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
ax.add_artist(pol_sc)
ax.add_artist(px_sc)
@@ -528,6 +592,7 @@ def polarization_map(
# Display instrument FOV
if rectangle is not None:
x, y, width, height, angle, color = rectangle
x, y = np.array([x, y]) - np.array(stkI.shape) / 2.0
ax.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
@@ -590,6 +655,7 @@ class align_maps(object):
)
plt.rcParams.update({"font.size": 10})
fontprops = fm.FontProperties(size=16)
self.fig_align = plt.figure(figsize=(20, 10))
self.map_ax = self.fig_align.add_subplot(121, projection=self.map_wcs)

View File

@@ -528,27 +528,25 @@ def get_error(
# estimated to less than 3%
err_flat = data * 0.03
if sub_type is None:
n_data_array, c_error_bkg, headers, background = bkg_hist(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
if (sub_type is None):
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_hist(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
sub_type, subtract_error = "histogram ", str(int(subtract_error > 0.0))
elif isinstance(sub_type, str):
if sub_type.lower() in ["auto"]:
n_data_array, c_error_bkg, headers, background = bkg_fit(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
if sub_type.lower() in ['auto']:
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_fit(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
else:
n_data_array, c_error_bkg, headers, background = bkg_hist(
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_hist(
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
sub_type, subtract_error = "histogram ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
elif isinstance(sub_type, tuple):
n_data_array, c_error_bkg, headers, background = bkg_mini(
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
n_data_array, c_error_bkg, headers, background, error_bkg = bkg_mini(
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
else:
print("Warning: Invalid subtype.")
@@ -560,7 +558,7 @@ def get_error(
n_error_array = np.sqrt(err_wav**2 + err_psf**2 + err_flat**2 + c_error_bkg**2)
if return_background:
return n_data_array, n_error_array, headers, background
return n_data_array, n_error_array, headers, background, error_bkg # return background error as well
else:
return n_data_array, n_error_array, headers
@@ -693,7 +691,7 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
def align_data(
data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False
data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False, optimal_binning=False
):
"""
Align images in data_array using cross correlation, and rescale them to
@@ -772,12 +770,13 @@ def align_data(
full_headers.append(headers[0])
err_array = np.concatenate((error_array, [np.zeros(ref_data.shape)]), axis=0)
if data_mask is None:
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
else:
full_array, err_array, data_mask, full_headers = crop_array(
full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0
)
if not optimal_binning:
if data_mask is None:
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
else:
full_array, err_array, data_mask, full_headers = crop_array(
full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0
)
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
error_array = err_array[:-1]
@@ -856,7 +855,9 @@ def align_data(
headers[i].update(headers_wcs[i].to_header())
data_mask = rescaled_mask.all(axis=0)
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask, null_val=0.01 * background)
if not optimal_binning:
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask, null_val=0.01*background)
if return_shifts:
return data_array, error_array, headers, data_mask, shifts, errors
@@ -1847,4 +1848,4 @@ def rotate_data(data_array, error_array, data_mask, headers):
for i in range(new_data_array.shape[0]):
new_data_array[i][new_data_array[i] < 0.0] = 0.0
return new_data_array, new_error_array, new_data_mask, new_headers
return new_data_array, new_error_array, new_data_mask, new_headers