switch back to unit time in seconds, prepare for parallel computing
This commit is contained in:
68
main_concurrent.py
Executable file
68
main_concurrent.py
Executable file
@@ -0,0 +1,68 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding:utf-8 -*-
|
||||
from sys import exit as sysexit
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
||||
from lib.objects import Body, System
|
||||
from lib.LeapFrog import leapfrog
|
||||
from lib.hermite import hermite
|
||||
from lib.plots import display_parameters
|
||||
from lib.units import *
|
||||
|
||||
def main():
|
||||
#initialisation
|
||||
m = np.array([1., 1., 1e-1],dtype=np.longdouble)*Ms/Ms # Masses in Solar mass
|
||||
a = np.array([1., 1., 5.],dtype=np.longdouble)*au/au # Semi-major axis in astronomical units
|
||||
e = np.array([0., 0., 0.],dtype=np.longdouble) # Eccentricity
|
||||
psi = np.array([0., 0., 0.],dtype=np.longdouble)*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
|
||||
x1 = np.array([0., -1., 0.],dtype=np.longdouble)*a[0]*(1.+e[0])
|
||||
x2 = np.array([0., 1., 0.],dtype=np.longdouble)*a[1]*(1.+e[1])
|
||||
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])],dtype=np.longdouble)*a[2]*(1.+e[2])
|
||||
q = np.array([x1, x2, x3],dtype=np.longdouble)
|
||||
|
||||
v1 = np.array([np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v2 = np.array([-np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v3 = np.array([0., np.sqrt(Ga*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.],dtype=np.longdouble)
|
||||
v = np.array([v1, v2, v3],dtype=np.longdouble)
|
||||
|
||||
#integration parameters
|
||||
duration, step = 100*yr, np.array([1./(365.25*24.), 12./(365.25*24.), 24./(365.25*24.)],dtype=np.longdouble)*yr #integration time and step in seconds
|
||||
step = np.sort(step)[::-1]
|
||||
integrator = "leapfrog"
|
||||
n_bodies = 3
|
||||
display = False
|
||||
savename = "{0:d}bodies_conc_{1:s}".format(n_bodies, integrator)
|
||||
|
||||
bodies, bodysyst = [],[]
|
||||
for j in range(n_bodies):
|
||||
bodies.append(Body(m[j], q[j], v[j]))
|
||||
bin_syst = System(bodies[0:2])
|
||||
dyn_syst = System(bodies, main=True)
|
||||
bodysyst = [[deepcopy(bin_syst), deepcopy(dyn_syst)] for _ in range(n_bodies)]
|
||||
#simulation start
|
||||
exe = ProcessPoolExecutor()
|
||||
future_ELae = []
|
||||
for i,step0 in enumerate(step):
|
||||
if i != 0:
|
||||
display = False
|
||||
if integrator.lower() in ['leapfrog', 'frogleap', 'frog']:
|
||||
future_ELae.append(exe.submit(leapfrog, bodysyst[i][1], bodysyst[i][0], duration, step0, recover_param=True, display=display, savename=savename))
|
||||
elif integrator.lower() in ['hermite','herm']:
|
||||
future_ELae.append(exe.submit(hermite, bodysyst[i][1], bodysyst[i][0], duration, step0, recover_param=True, display=display, savename=savename))
|
||||
|
||||
E, L, sma, ecc = [], [], [], []
|
||||
for future in future_ELae:
|
||||
E0, L0, sma0, ecc0 = future.result()
|
||||
E.append(E0)
|
||||
L.append(L0)
|
||||
sma.append(sma0)
|
||||
ecc.append(ecc0)
|
||||
parameters = [duration, step, dyn_syst, integrator]
|
||||
display_parameters(E, L, sma, ecc, parameters=parameters, savename=savename)
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
sysexit(main())
|
||||
Reference in New Issue
Block a user