switch back to unit time in seconds, prepare for parallel computing
This commit is contained in:
@@ -58,9 +58,9 @@ def leapfrog(dyn_syst, bin_syst, duration, dt, recover_param=False, display=Fals
|
||||
if display and j % 10 == 0:
|
||||
# display progression
|
||||
if len(dyn_syst.bodylist) == 1:
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt/yr))
|
||||
else:
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt/yr))
|
||||
if display:
|
||||
d.close()
|
||||
if not savename is None:
|
||||
|
||||
11
lib/plots.py
11
lib/plots.py
@@ -110,12 +110,12 @@ def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
||||
bodies = ""
|
||||
for body in dyn_syst.bodylist:
|
||||
bodies += str(body)+" ; "
|
||||
title1, title2 = "Relative difference of the {0:s} ","for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration)
|
||||
title1, title2 = "Relative difference of the {0:s} ","for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration/yr)
|
||||
|
||||
fig1 = plt.figure(figsize=(15,7))
|
||||
ax1 = fig1.add_subplot(111)
|
||||
for i in range(len(E)):
|
||||
ax1.plot(np.arange(E[i].shape[0]-1)*step[i], np.abs((E[i][1:]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax1.plot(np.arange(E[i].shape[0]-1)*step[i]/yr, np.abs((E[i][1:]-E[i][0])/E[i][0]), label="step of {0:.2e}s".format(step[i]))
|
||||
ax1.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
|
||||
ax1.legend()
|
||||
fig1.suptitle(title1.format("mechanical energy")+title2)
|
||||
@@ -126,7 +126,7 @@ def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
||||
for i in range(len(L)):
|
||||
dL = ((L[i]-L[i][0])/L[i][0])
|
||||
dL[np.isnan(dL)] = 0.
|
||||
ax2.plot(np.arange(L[i].shape[0]-1)*step[i], np.abs(np.sum(dL[1:],axis=1)), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax2.plot(np.arange(L[i].shape[0]-1)*step[i]/yr, np.abs(np.sum(dL[1:],axis=1)), label="step of {0:.2e}s".format(step[i]))
|
||||
ax2.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
|
||||
ax2.legend()
|
||||
fig2.suptitle(title1.format("kinetic moment")+title2)
|
||||
@@ -134,8 +134,9 @@ def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
||||
|
||||
fig3 = plt.figure(figsize=(15,7))
|
||||
ax3 = fig3.add_subplot(111)
|
||||
ax3.plot(np.arange(sma.shape[0])*step[i], sma, label="a (semi major axis)")
|
||||
ax3.plot(np.arange(ecc.shape[0])*step[i], ecc, label="e (eccentricity)")
|
||||
for i in range(len(L)):
|
||||
ax3.plot(np.arange(sma[i].shape[0])*step[i]/yr, sma[i], label="a (step of {0:.2e}s)".format(step[i]))
|
||||
ax3.plot(np.arange(ecc[i].shape[0])*step[i]/yr, ecc[i], label="e (step of {0:.2e}s)".format(step[i]))
|
||||
ax3.set(xlabel=r"$t \, [yr]$", ylabel=r"$a \, [au] \, or \, e$")
|
||||
ax3.legend()
|
||||
fig3.suptitle("Semi major axis and eccentricity "+title2)
|
||||
|
||||
@@ -8,4 +8,4 @@ globals()['G'] = 6.67e-11 #Gravitational constant in SI units
|
||||
globals()['Ms'] = 2e30 #Solar mass in kg
|
||||
globals()['au'] = 1.5e11 #Astronomical unit in m
|
||||
globals()['yr'] = 3.15576e7 #year in seconds
|
||||
globals()['Ga'] = G*Ms*yr**2/au**3 #Gravitational constant dimensionless
|
||||
globals()['Ga'] = G*Ms/au**3 #Gravitational constant dimensionless
|
||||
4
main.py
4
main.py
@@ -27,9 +27,9 @@ def main():
|
||||
v = np.array([v1, v2, v3],dtype=np.longdouble)
|
||||
|
||||
#integration parameters
|
||||
duration, step = 100*yr/yr, np.array([1./(365.25*2.), 1./(365.25*1.), 5./(365.25*1.)],dtype=np.longdouble)*yr/yr #integration time and step in years
|
||||
duration, step = 100*yr, np.array([60.],dtype=np.longdouble) #integration time and step in seconds
|
||||
step = np.sort(step)[::-1]
|
||||
integrator = "hermite"
|
||||
integrator = "leapfrog"
|
||||
n_bodies = 3
|
||||
display = False
|
||||
savename = "{0:d}bodies_{1:s}".format(n_bodies, integrator)
|
||||
|
||||
68
main_concurrent.py
Executable file
68
main_concurrent.py
Executable file
@@ -0,0 +1,68 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding:utf-8 -*-
|
||||
from sys import exit as sysexit
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
||||
from lib.objects import Body, System
|
||||
from lib.LeapFrog import leapfrog
|
||||
from lib.hermite import hermite
|
||||
from lib.plots import display_parameters
|
||||
from lib.units import *
|
||||
|
||||
def main():
|
||||
#initialisation
|
||||
m = np.array([1., 1., 1e-1],dtype=np.longdouble)*Ms/Ms # Masses in Solar mass
|
||||
a = np.array([1., 1., 5.],dtype=np.longdouble)*au/au # Semi-major axis in astronomical units
|
||||
e = np.array([0., 0., 0.],dtype=np.longdouble) # Eccentricity
|
||||
psi = np.array([0., 0., 0.],dtype=np.longdouble)*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
|
||||
x1 = np.array([0., -1., 0.],dtype=np.longdouble)*a[0]*(1.+e[0])
|
||||
x2 = np.array([0., 1., 0.],dtype=np.longdouble)*a[1]*(1.+e[1])
|
||||
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])],dtype=np.longdouble)*a[2]*(1.+e[2])
|
||||
q = np.array([x1, x2, x3],dtype=np.longdouble)
|
||||
|
||||
v1 = np.array([np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v2 = np.array([-np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v3 = np.array([0., np.sqrt(Ga*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.],dtype=np.longdouble)
|
||||
v = np.array([v1, v2, v3],dtype=np.longdouble)
|
||||
|
||||
#integration parameters
|
||||
duration, step = 100*yr, np.array([1./(365.25*24.), 12./(365.25*24.), 24./(365.25*24.)],dtype=np.longdouble)*yr #integration time and step in seconds
|
||||
step = np.sort(step)[::-1]
|
||||
integrator = "leapfrog"
|
||||
n_bodies = 3
|
||||
display = False
|
||||
savename = "{0:d}bodies_conc_{1:s}".format(n_bodies, integrator)
|
||||
|
||||
bodies, bodysyst = [],[]
|
||||
for j in range(n_bodies):
|
||||
bodies.append(Body(m[j], q[j], v[j]))
|
||||
bin_syst = System(bodies[0:2])
|
||||
dyn_syst = System(bodies, main=True)
|
||||
bodysyst = [[deepcopy(bin_syst), deepcopy(dyn_syst)] for _ in range(n_bodies)]
|
||||
#simulation start
|
||||
exe = ProcessPoolExecutor()
|
||||
future_ELae = []
|
||||
for i,step0 in enumerate(step):
|
||||
if i != 0:
|
||||
display = False
|
||||
if integrator.lower() in ['leapfrog', 'frogleap', 'frog']:
|
||||
future_ELae.append(exe.submit(leapfrog, bodysyst[i][1], bodysyst[i][0], duration, step0, recover_param=True, display=display, savename=savename))
|
||||
elif integrator.lower() in ['hermite','herm']:
|
||||
future_ELae.append(exe.submit(hermite, bodysyst[i][1], bodysyst[i][0], duration, step0, recover_param=True, display=display, savename=savename))
|
||||
|
||||
E, L, sma, ecc = [], [], [], []
|
||||
for future in future_ELae:
|
||||
E0, L0, sma0, ecc0 = future.result()
|
||||
E.append(E0)
|
||||
L.append(L0)
|
||||
sma.append(sma0)
|
||||
ecc.append(ecc0)
|
||||
parameters = [duration, step, dyn_syst, integrator]
|
||||
display_parameters(E, L, sma, ecc, parameters=parameters, savename=savename)
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
sysexit(main())
|
||||
Reference in New Issue
Block a user