debugg hermite and force use of longdouble type
@@ -18,7 +18,7 @@ def Drift(dyn_syst, dt):
|
||||
|
||||
def Kick(dyn_syst, dt):
|
||||
for body in dyn_syst.bodylist:
|
||||
body.a = np.zeros(3)
|
||||
body.a = np.zeros(3,dtype=np.longdouble)
|
||||
for otherbody in dyn_syst.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.q - otherbody.q)
|
||||
@@ -43,10 +43,10 @@ def leapfrog(dyn_syst, bin_syst, duration, dt, recover_param=False, display=Fals
|
||||
d.launch(dyn_syst.blackstyle)
|
||||
|
||||
N = np.ceil(duration / dt).astype(int)
|
||||
E = np.zeros(N)
|
||||
L = np.zeros((N, 3))
|
||||
sma = np.zeros(N)
|
||||
ecc = np.zeros(N)
|
||||
E = np.zeros(N,dtype=np.longdouble)
|
||||
L = np.zeros((N, 3),dtype=np.longdouble)
|
||||
sma = np.zeros(N,dtype=np.longdouble)
|
||||
ecc = np.zeros(N,dtype=np.longdouble)
|
||||
for j in range(N):
|
||||
LP(dyn_syst,dt)
|
||||
|
||||
@@ -58,9 +58,9 @@ def leapfrog(dyn_syst, bin_syst, duration, dt, recover_param=False, display=Fals
|
||||
if display and j % 10 == 0:
|
||||
# display progression
|
||||
if len(dyn_syst.bodylist) == 1:
|
||||
d.on_running(dyn_syst, step=j, label="step {0:d}/{1:d}".format(j, N))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt))
|
||||
else:
|
||||
d.on_running(dyn_syst, step=j, label="step {0:d}/{1:d}".format(j, N))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt))
|
||||
if display:
|
||||
d.close()
|
||||
if not savename is None:
|
||||
|
||||
@@ -13,23 +13,23 @@ from lib.units import *
|
||||
|
||||
def Update_a(dyn_syst): # update acceleration of bodies in system
|
||||
for body in dyn_syst.bodylist:
|
||||
body.a = np.zeros(3)
|
||||
body.a = np.zeros(3,dtype=np.longdouble)
|
||||
for otherbody in dyn_syst.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.q - otherbody.q)
|
||||
body.a = body.a - (body.q - otherbody.q) * G * otherbody.m / (rij ** 3)
|
||||
body.a = body.a - (body.q - otherbody.q) * Ga * otherbody.m / (rij ** 3)
|
||||
|
||||
|
||||
def Update_j(dyn_syst): # update jerk of bodies in system
|
||||
for body in dyn_syst.bodylist:
|
||||
body.j = np.zeros(3)
|
||||
body.j = np.zeros(3,dtype=np.longdouble)
|
||||
for otherbody in dyn_syst.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.q - otherbody.q)
|
||||
deltav = (body.v - otherbody.v)
|
||||
deltar = (body.q - otherbody.q)
|
||||
vr = deltav + 3. * deltar * np.inner(deltav, deltar) / (rij ** 2)
|
||||
body.j = body.j - G * otherbody.m / (rij ** 3) * vr
|
||||
body.j = body.j - Ga * otherbody.m / (rij ** 3) * vr
|
||||
|
||||
|
||||
def Predict(dyn_syst, dt): # update predicted position and velocities of bodies in system
|
||||
@@ -40,23 +40,23 @@ def Predict(dyn_syst, dt): # update predicted position and velocities of bodies
|
||||
|
||||
def Update_ap(dyn_syst): # update acceleration of bodies in system
|
||||
for body in dyn_syst.bodylist:
|
||||
body.ap = np.zeros(3)
|
||||
body.ap = np.zeros(3,dtype=np.longdouble)
|
||||
for otherbody in dyn_syst.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.qp - otherbody.qp)
|
||||
body.ap = body.ap - (body.qp - otherbody.qp) * G * otherbody.m / (rij ** 3)
|
||||
body.ap = body.ap - (body.qp - otherbody.qp) * Ga * otherbody.m / (rij ** 3)
|
||||
|
||||
|
||||
def Update_jp(dyn_syst): # update jerk of bodies in system
|
||||
for body in dyn_syst.bodylist:
|
||||
body.jp = np.zeros(3)
|
||||
body.jp = np.zeros(3,dtype=np.longdouble)
|
||||
for otherbody in dyn_syst.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.qp - otherbody.qp)
|
||||
deltav = (body.vp - otherbody.vp)
|
||||
deltar = (body.qp - otherbody.qp)
|
||||
vr = deltav + 3. * deltar * np.inner(deltav, deltar) / (rij ** 2)
|
||||
body.jp = body.jp - G * otherbody.m / (rij ** 3) * vr
|
||||
body.jp = body.jp - Ga * otherbody.m / (rij ** 3) * vr
|
||||
|
||||
|
||||
def Correct(dyn_syst, dt): # correct position and velocities of bodies in system
|
||||
@@ -69,7 +69,7 @@ def Correct(dyn_syst, dt): # correct position and velocities of bodies in syste
|
||||
|
||||
|
||||
def HPC(dyn_syst, dt): # update position and velocities of bodies in system with hermite predictor corrector
|
||||
COMShift(dyn_syst)
|
||||
dyn_syst.COMShift()
|
||||
Update_a(dyn_syst)
|
||||
Update_j(dyn_syst)
|
||||
Predict(dyn_syst, dt)
|
||||
@@ -79,7 +79,7 @@ def HPC(dyn_syst, dt): # update position and velocities of bodies in system wit
|
||||
dyn_syst.time = dyn_syst.time + dt
|
||||
|
||||
|
||||
def hermite(dyn_syst, duration, dt, recover_param=False, display=False, savename=None):
|
||||
def hermite(dyn_syst, bin_syst, duration, dt, recover_param=False, display=False, savename=None):
|
||||
if display:
|
||||
try:
|
||||
system("mkdir tmp")
|
||||
@@ -89,10 +89,10 @@ def hermite(dyn_syst, duration, dt, recover_param=False, display=False, savename
|
||||
d.launch(dyn_syst.blackstyle)
|
||||
|
||||
N = np.ceil(duration / dt).astype(int)
|
||||
E = np.zeros(N)
|
||||
L = np.zeros((N, 3))
|
||||
sma = np.zeros(N)
|
||||
ecc = np.zeros(N)
|
||||
E = np.zeros(N,dtype=np.longdouble)
|
||||
L = np.zeros((N, 3),dtype=np.longdouble)
|
||||
sma = np.zeros(N,dtype=np.longdouble)
|
||||
ecc = np.zeros(N,dtype=np.longdouble)
|
||||
|
||||
for j in range(N):
|
||||
HPC(dyn_syst, dt)
|
||||
@@ -105,9 +105,9 @@ def hermite(dyn_syst, duration, dt, recover_param=False, display=False, savename
|
||||
if display and j % 10 == 0:
|
||||
# display progression
|
||||
if len(dyn_syst.bodylist) == 1:
|
||||
d.on_running(dyn_syst, step=j, label="step {0:d}/{1:d}".format(j, N))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} yearq".format(j*dt))
|
||||
else:
|
||||
d.on_running(dyn_syst, step=j, label="step {0:d}/{1:d}".format(j, N))
|
||||
d.on_running(dyn_syst, step=j, label="{0:.2f} years".format(j*dt))
|
||||
if display:
|
||||
d.close()
|
||||
if not savename is None:
|
||||
|
||||
@@ -14,12 +14,12 @@ class Body:
|
||||
self.m = mass
|
||||
self.q = position
|
||||
self.v = velocity
|
||||
self.a = np.zeros(3)
|
||||
self.ap = np.zeros(3)
|
||||
self.j = np.zeros(3)
|
||||
self.jp = np.zeros(3)
|
||||
self.qp = np.zeros(3)
|
||||
self.vp = np.zeros(3)
|
||||
self.a = np.zeros(3,dtype=np.longdouble)
|
||||
self.ap = np.zeros(3,dtype=np.longdouble)
|
||||
self.j = np.zeros(3,dtype=np.longdouble)
|
||||
self.jp = np.zeros(3,dtype=np.longdouble)
|
||||
self.qp = np.zeros(3,dtype=np.longdouble)
|
||||
self.vp = np.zeros(3,dtype=np.longdouble)
|
||||
|
||||
def __repr__(self): # Called upon "print(body)"
|
||||
return r"Body of mass: {0:.1e} $M_\odot$, position: {1}, velocity: {2}".format(self.m, self.q, self.v)
|
||||
@@ -51,27 +51,27 @@ class System(Body):
|
||||
|
||||
@property
|
||||
def get_masses(self): #return the masses of each object
|
||||
return np.array([body.m for body in self.bodylist])
|
||||
return np.array([body.m for body in self.bodylist],dtype=np.longdouble)
|
||||
|
||||
@property
|
||||
def get_positions(self): #return the positions of the bodies
|
||||
xdata = np.array([body.q[0] for body in self.bodylist])
|
||||
ydata = np.array([body.q[1] for body in self.bodylist])
|
||||
zdata = np.array([body.q[2] for body in self.bodylist])
|
||||
xdata = np.array([body.q[0] for body in self.bodylist],dtype=np.longdouble)
|
||||
ydata = np.array([body.q[1] for body in self.bodylist],dtype=np.longdouble)
|
||||
zdata = np.array([body.q[2] for body in self.bodylist],dtype=np.longdouble)
|
||||
return xdata, ydata, zdata
|
||||
|
||||
@property
|
||||
def get_velocities(self): #return the positions of the bodies
|
||||
vxdata = np.array([body.v[0] for body in self.bodylist])
|
||||
vydata = np.array([body.v[1] for body in self.bodylist])
|
||||
vzdata = np.array([body.v[2] for body in self.bodylist])
|
||||
vxdata = np.array([body.v[0] for body in self.bodylist],dtype=np.longdouble)
|
||||
vydata = np.array([body.v[1] for body in self.bodylist],dtype=np.longdouble)
|
||||
vzdata = np.array([body.v[2] for body in self.bodylist],dtype=np.longdouble)
|
||||
return vxdata, vydata, vzdata
|
||||
|
||||
@property
|
||||
def get_momenta(self): #return the momenta of the bodies
|
||||
pxdata = np.array([body.p[0] for body in self.bodylist])
|
||||
pydata = np.array([body.p[1] for body in self.bodylist])
|
||||
pzdata = np.array([body.p[2] for body in self.bodylist])
|
||||
pxdata = np.array([body.p[0] for body in self.bodylist],dtype=np.longdouble)
|
||||
pydata = np.array([body.p[1] for body in self.bodylist],dtype=np.longdouble)
|
||||
pzdata = np.array([body.p[2] for body in self.bodylist],dtype=np.longdouble)
|
||||
return pxdata, pydata, pzdata
|
||||
|
||||
@property
|
||||
@@ -91,7 +91,7 @@ class System(Body):
|
||||
|
||||
@property
|
||||
def COM(self): #return center of mass in cartesian np_array
|
||||
coord = np.zeros(3)
|
||||
coord = np.zeros(3,dtype=np.longdouble)
|
||||
for body in self.bodylist:
|
||||
coord = coord + body.m*body.q
|
||||
coord = coord/self.M
|
||||
@@ -99,7 +99,7 @@ class System(Body):
|
||||
|
||||
@property
|
||||
def COMV(self): #return center of mass velocity in cartesian np_array
|
||||
coord = np.zeros(3)
|
||||
coord = np.zeros(3,dtype=np.longdouble)
|
||||
for body in self.bodylist:
|
||||
coord = coord + body.m*body.v
|
||||
coord = coord/self.M
|
||||
@@ -112,7 +112,7 @@ class System(Body):
|
||||
|
||||
@property
|
||||
def LCOM(self): #return angular momentum of the center of mass
|
||||
LCOM = np.zeros(3)
|
||||
LCOM = np.zeros(3,dtype=np.longdouble)
|
||||
dr = self.bodylist[0].m/self.mu*self.bodylist[0].q
|
||||
dv = self.bodylist[0].m/self.mu*self.bodylist[0].v
|
||||
LCOM = self.mu*np.cross(dr,dv)
|
||||
@@ -127,7 +127,7 @@ class System(Body):
|
||||
|
||||
@property
|
||||
def L(self): #return angular momentum of bodies in system
|
||||
L = np.zeros(3)
|
||||
L = np.zeros(3,dtype=np.longdouble)
|
||||
for body in self.bodylist:
|
||||
L = L + np.cross(body.q,body.p)
|
||||
return L
|
||||
|
||||
@@ -115,7 +115,7 @@ def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
||||
fig1 = plt.figure(figsize=(15,7))
|
||||
ax1 = fig1.add_subplot(111)
|
||||
for i in range(len(E)):
|
||||
ax1.plot(np.arange(E[i].shape[0])*step[i], np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax1.plot(np.arange(E[i].shape[0]-1)*step[i], np.abs((E[i][1:]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax1.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
|
||||
ax1.legend()
|
||||
fig1.suptitle(title1.format("mechanical energy")+title2)
|
||||
@@ -126,7 +126,7 @@ def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
||||
for i in range(len(L)):
|
||||
dL = ((L[i]-L[i][0])/L[i][0])
|
||||
dL[np.isnan(dL)] = 0.
|
||||
ax2.plot(np.arange(L[i].shape[0])*step[i], np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax2.plot(np.arange(L[i].shape[0]-1)*step[i], np.abs(np.sum(dL[1:],axis=1)), label="step of {0:.2e}yr".format(step[i]))
|
||||
ax2.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
|
||||
ax2.legend()
|
||||
fig2.suptitle(title1.format("kinetic moment")+title2)
|
||||
|
||||
@@ -8,4 +8,4 @@ globals()['G'] = 6.67e-11 #Gravitational constant in SI units
|
||||
globals()['Ms'] = 2e30 #Solar mass in kg
|
||||
globals()['au'] = 1.5e11 #Astronomical unit in m
|
||||
globals()['yr'] = 3.15576e7 #year in seconds
|
||||
globals()['Ga'] = G*Ms*yr**2/au**3 #Gravitational constant adimensionned
|
||||
globals()['Ga'] = G*Ms*yr**2/au**3 #Gravitational constant dimensionless
|
||||
32
main.py
@@ -11,28 +11,28 @@ from lib.units import *
|
||||
|
||||
def main():
|
||||
#initialisation
|
||||
m = np.array([1., 1., 1e-5])*Ms/Ms # Masses in Solar mass
|
||||
a = np.array([1., 1., 5.])*au/au # Semi-major axis in astronomical units
|
||||
e = np.array([0., 0., 1./4.]) # Eccentricity
|
||||
psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
m = np.array([1., 1., 1e-1],dtype=np.longdouble)*Ms/Ms # Masses in Solar mass
|
||||
a = np.array([1., 1., 5.],dtype=np.longdouble)*au/au # Semi-major axis in astronomical units
|
||||
e = np.array([0., 0., 0.],dtype=np.longdouble) # Eccentricity
|
||||
psi = np.array([0., 0., 0.],dtype=np.longdouble)*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
|
||||
x1 = np.array([0., -1., 0.])*a[0]*(1.+e[0])
|
||||
x2 = np.array([0., 1., 0.])*a[1]*(1.+e[1])
|
||||
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2]*(1.+e[2])
|
||||
q = np.array([x1, x2, x3])
|
||||
x1 = np.array([0., -1., 0.],dtype=np.longdouble)*a[0]*(1.+e[0])
|
||||
x2 = np.array([0., 1., 0.],dtype=np.longdouble)*a[1]*(1.+e[1])
|
||||
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])],dtype=np.longdouble)*a[2]*(1.+e[2])
|
||||
q = np.array([x1, x2, x3],dtype=np.longdouble)
|
||||
|
||||
v1 = np.array([np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v2 = np.array([-np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v3 = np.array([0., np.sqrt(Ga*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.])
|
||||
v = np.array([v1, v2, v3])
|
||||
v1 = np.array([np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v2 = np.array([-np.sqrt(Ga*m[0]*m[1]/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.],dtype=np.longdouble)
|
||||
v3 = np.array([0., np.sqrt(Ga*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.],dtype=np.longdouble)
|
||||
v = np.array([v1, v2, v3],dtype=np.longdouble)
|
||||
|
||||
#integration parameters
|
||||
duration, step = 100*yr/yr, np.array([1./(365.25*2.), 1./(365.25*1.), 5./(365.25*1.)])*yr/yr #integration time and step in years
|
||||
step = np.sort(step)
|
||||
integrator = "leapfrog"
|
||||
duration, step = 100*yr/yr, np.array([1./(365.25*2.), 1./(365.25*1.), 5./(365.25*1.)],dtype=np.longdouble)*yr/yr #integration time and step in years
|
||||
step = np.sort(step)[::-1]
|
||||
integrator = "hermite"
|
||||
n_bodies = 3
|
||||
display = False
|
||||
savename = "{0:d}bodies_mass_{1:s}".format(n_bodies, integrator)
|
||||
savename = "{0:d}bodies_{1:s}".format(n_bodies, integrator)
|
||||
|
||||
#simulation start
|
||||
E, L = [], []
|
||||
|
||||
BIN
plots/2bodies_hermite_a_e.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
|
Before Width: | Height: | Size: 88 KiB After Width: | Height: | Size: 78 KiB |
|
Before Width: | Height: | Size: 52 KiB After Width: | Height: | Size: 52 KiB |
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 164 KiB |
|
Before Width: | Height: | Size: 122 KiB After Width: | Height: | Size: 138 KiB |
BIN
plots/3bodies_hermite_a_e.png
Normal file
|
After Width: | Height: | Size: 143 KiB |
|
Before Width: | Height: | Size: 92 KiB After Width: | Height: | Size: 136 KiB |
|
Before Width: | Height: | Size: 54 KiB After Width: | Height: | Size: 57 KiB |
|
Before Width: | Height: | Size: 549 KiB After Width: | Height: | Size: 3.9 MiB |
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 143 KiB |
|
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 161 KiB |
|
Before Width: | Height: | Size: 122 KiB After Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 1.2 MiB After Width: | Height: | Size: 796 KiB |
|
Before Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 183 KiB |
|
Before Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 37 KiB |
|
Before Width: | Height: | Size: 194 KiB |
|
Before Width: | Height: | Size: 37 KiB |