Initial commit
This commit is contained in:
237
polarisation/boost/math/special_functions/chebyshev_transform.hpp
Executable file
237
polarisation/boost/math/special_functions/chebyshev_transform.hpp
Executable file
@@ -0,0 +1,237 @@
|
||||
// (C) Copyright Nick Thompson 2017.
|
||||
// Use, modification and distribution are subject to the
|
||||
// Boost Software License, Version 1.0. (See accompanying file
|
||||
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_MATH_SPECIAL_CHEBYSHEV_TRANSFORM_HPP
|
||||
#define BOOST_MATH_SPECIAL_CHEBYSHEV_TRANSFORM_HPP
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
#include <fftw3.h>
|
||||
#include <boost/math/constants/constants.hpp>
|
||||
#include <boost/math/special_functions/chebyshev.hpp>
|
||||
|
||||
#ifdef BOOST_HAS_FLOAT128
|
||||
#include <quadmath.h>
|
||||
#endif
|
||||
|
||||
namespace boost { namespace math {
|
||||
|
||||
namespace detail{
|
||||
|
||||
template <class T>
|
||||
struct fftw_cos_transform;
|
||||
|
||||
template<>
|
||||
struct fftw_cos_transform<double>
|
||||
{
|
||||
fftw_cos_transform(int n, double* data1, double* data2)
|
||||
{
|
||||
plan = fftw_plan_r2r_1d(n, data1, data2, FFTW_REDFT10, FFTW_ESTIMATE);
|
||||
}
|
||||
~fftw_cos_transform()
|
||||
{
|
||||
fftw_destroy_plan(plan);
|
||||
}
|
||||
void execute(double* data1, double* data2)
|
||||
{
|
||||
fftw_execute_r2r(plan, data1, data2);
|
||||
}
|
||||
static double cos(double x) { return std::cos(x); }
|
||||
static double fabs(double x) { return std::fabs(x); }
|
||||
private:
|
||||
fftw_plan plan;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct fftw_cos_transform<float>
|
||||
{
|
||||
fftw_cos_transform(int n, float* data1, float* data2)
|
||||
{
|
||||
plan = fftwf_plan_r2r_1d(n, data1, data2, FFTW_REDFT10, FFTW_ESTIMATE);
|
||||
}
|
||||
~fftw_cos_transform()
|
||||
{
|
||||
fftwf_destroy_plan(plan);
|
||||
}
|
||||
void execute(float* data1, float* data2)
|
||||
{
|
||||
fftwf_execute_r2r(plan, data1, data2);
|
||||
}
|
||||
static float cos(float x) { return std::cos(x); }
|
||||
static float fabs(float x) { return std::fabs(x); }
|
||||
private:
|
||||
fftwf_plan plan;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct fftw_cos_transform<long double>
|
||||
{
|
||||
fftw_cos_transform(int n, long double* data1, long double* data2)
|
||||
{
|
||||
plan = fftwl_plan_r2r_1d(n, data1, data2, FFTW_REDFT10, FFTW_ESTIMATE);
|
||||
}
|
||||
~fftw_cos_transform()
|
||||
{
|
||||
fftwl_destroy_plan(plan);
|
||||
}
|
||||
void execute(long double* data1, long double* data2)
|
||||
{
|
||||
fftwl_execute_r2r(plan, data1, data2);
|
||||
}
|
||||
static long double cos(long double x) { return std::cos(x); }
|
||||
static long double fabs(long double x) { return std::fabs(x); }
|
||||
private:
|
||||
fftwl_plan plan;
|
||||
};
|
||||
#ifdef BOOST_HAS_FLOAT128
|
||||
template<>
|
||||
struct fftw_cos_transform<__float128>
|
||||
{
|
||||
fftw_cos_transform(int n, __float128* data1, __float128* data2)
|
||||
{
|
||||
plan = fftwq_plan_r2r_1d(n, data1, data2, FFTW_REDFT10, FFTW_ESTIMATE);
|
||||
}
|
||||
~fftw_cos_transform()
|
||||
{
|
||||
fftwq_destroy_plan(plan);
|
||||
}
|
||||
void execute(__float128* data1, __float128* data2)
|
||||
{
|
||||
fftwq_execute_r2r(plan, data1, data2);
|
||||
}
|
||||
static __float128 cos(__float128 x) { return cosq(x); }
|
||||
static __float128 fabs(__float128 x) { return fabsq(x); }
|
||||
private:
|
||||
fftwq_plan plan;
|
||||
};
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template<class Real>
|
||||
class chebyshev_transform
|
||||
{
|
||||
public:
|
||||
template<class F>
|
||||
chebyshev_transform(const F& f, Real a, Real b,
|
||||
Real tol = 500 * std::numeric_limits<Real>::epsilon(),
|
||||
size_t max_refinements = 15) : m_a(a), m_b(b)
|
||||
{
|
||||
if (a >= b)
|
||||
{
|
||||
throw std::domain_error("a < b is required.\n");
|
||||
}
|
||||
using boost::math::constants::half;
|
||||
using boost::math::constants::pi;
|
||||
using std::cos;
|
||||
using std::abs;
|
||||
Real bma = (b-a)*half<Real>();
|
||||
Real bpa = (b+a)*half<Real>();
|
||||
size_t n = 256;
|
||||
std::vector<Real> vf;
|
||||
|
||||
size_t refinements = 0;
|
||||
while(refinements < max_refinements)
|
||||
{
|
||||
vf.resize(n);
|
||||
m_coeffs.resize(n);
|
||||
|
||||
detail::fftw_cos_transform<Real> plan(static_cast<int>(n), vf.data(), m_coeffs.data());
|
||||
Real inv_n = 1/static_cast<Real>(n);
|
||||
for(size_t j = 0; j < n/2; ++j)
|
||||
{
|
||||
// Use symmetry cos((j+1/2)pi/n) = - cos((n-1-j+1/2)pi/n)
|
||||
Real y = detail::fftw_cos_transform<Real>::cos(pi<Real>()*(j+half<Real>())*inv_n);
|
||||
vf[j] = f(y*bma + bpa)*inv_n;
|
||||
vf[n-1-j]= f(bpa-y*bma)*inv_n;
|
||||
}
|
||||
|
||||
plan.execute(vf.data(), m_coeffs.data());
|
||||
Real max_coeff = 0;
|
||||
for (auto const & coeff : m_coeffs)
|
||||
{
|
||||
if (detail::fftw_cos_transform<Real>::fabs(coeff) > max_coeff)
|
||||
{
|
||||
max_coeff = detail::fftw_cos_transform<Real>::fabs(coeff);
|
||||
}
|
||||
}
|
||||
size_t j = m_coeffs.size() - 1;
|
||||
while (abs(m_coeffs[j])/max_coeff < tol)
|
||||
{
|
||||
--j;
|
||||
}
|
||||
// If ten coefficients are eliminated, the we say we've done all
|
||||
// we need to do:
|
||||
if (n - j > 10)
|
||||
{
|
||||
m_coeffs.resize(j+1);
|
||||
return;
|
||||
}
|
||||
|
||||
n *= 2;
|
||||
++refinements;
|
||||
}
|
||||
}
|
||||
|
||||
Real operator()(Real x) const
|
||||
{
|
||||
using boost::math::constants::half;
|
||||
if (x > m_b || x < m_a)
|
||||
{
|
||||
throw std::domain_error("x not in [a, b]\n");
|
||||
}
|
||||
|
||||
Real z = (2*x - m_a - m_b)/(m_b - m_a);
|
||||
return chebyshev_clenshaw_recurrence(m_coeffs.data(), m_coeffs.size(), z);
|
||||
}
|
||||
|
||||
// Integral over entire domain [a, b]
|
||||
Real integrate() const
|
||||
{
|
||||
Real Q = m_coeffs[0]/2;
|
||||
for(size_t j = 2; j < m_coeffs.size(); j += 2)
|
||||
{
|
||||
Q += -m_coeffs[j]/((j+1)*(j-1));
|
||||
}
|
||||
return (m_b - m_a)*Q;
|
||||
}
|
||||
|
||||
const std::vector<Real>& coefficients() const
|
||||
{
|
||||
return m_coeffs;
|
||||
}
|
||||
|
||||
Real prime(Real x) const
|
||||
{
|
||||
Real z = (2*x - m_a - m_b)/(m_b - m_a);
|
||||
Real dzdx = 2/(m_b - m_a);
|
||||
if (m_coeffs.size() < 2)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
Real b2 = 0;
|
||||
Real d2 = 0;
|
||||
Real b1 = m_coeffs[m_coeffs.size() -1];
|
||||
Real d1 = 0;
|
||||
for(size_t j = m_coeffs.size() - 2; j >= 1; --j)
|
||||
{
|
||||
Real tmp1 = 2*z*b1 - b2 + m_coeffs[j];
|
||||
Real tmp2 = 2*z*d1 - d2 + 2*b1;
|
||||
b2 = b1;
|
||||
b1 = tmp1;
|
||||
|
||||
d2 = d1;
|
||||
d1 = tmp2;
|
||||
}
|
||||
return dzdx*(z*d1 - d2 + b1);
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<Real> m_coeffs;
|
||||
Real m_a;
|
||||
Real m_b;
|
||||
};
|
||||
|
||||
}}
|
||||
#endif
|
||||
Reference in New Issue
Block a user