10 Commits

7 changed files with 497 additions and 507 deletions

View File

@@ -20,7 +20,6 @@ import lib.reduction as proj_red # Functions used in reduction pipeline
import numpy as np
from lib.utils import princ_angle, sci_not
from matplotlib.colors import LogNorm
from astropy.wcs import WCS
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False):
@@ -41,8 +40,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
display_crop = False
# Background estimation
error_sub_type = "scott" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 1.50
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 1.33
display_bkg = True
# Data binning
@@ -64,7 +63,6 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
smoothing_scale = "arcsec" # pixel or arcsec
# Rotation
rotate_data = False
rotate_North = True
# Polarization map output
@@ -119,10 +117,9 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
# Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
data_array, error_array, data_mask, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, crop=True, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
)
data_mask = np.ones(data_array[0].shape, dtype=bool)
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve:
@@ -144,7 +141,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
)
# Rotate data to have same orientation
rotate_data = rotate_data or np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
if rotate_data:
ang = np.mean([head["ORIENTAT"] for head in headers])
for head in headers:
@@ -160,6 +157,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
),
)
# Align and rescale images with oversampling.
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
data_array,
@@ -183,14 +181,6 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
norm=LogNorm(vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]),
)
flux_data, flux_error, flux_mask, flux_head = (
deepcopy(data_array.sum(axis=0)),
deepcopy(np.sqrt(np.sum(error_array**2, axis=0))),
deepcopy(data_mask),
deepcopy(headers[0]),
)
flux_head["EXPTIME"] = np.sum([head["EXPTIME"] for head in headers])
# Rebin data to desired pixel size.
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
@@ -226,39 +216,36 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, header_bkg = proj_red.compute_Stokes(
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
)
# Step 3:
# Rotate images to have North up
if rotate_North:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes, SNRi_cut=None
)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
)
flux_data, flux_error, flux_mask, flux_head = proj_red.rotate_data(np.array([flux_data]), np.array([flux_error]), flux_mask, [flux_head])
flux_data, flux_error, flux_head = flux_data[0], flux_error[0], flux_head[0]
elif not rotate_data:
figname += "_noROT"
# Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, header_bkg)
# Step 4:
# Save image to FITS.
savename = "_".join([figname, figtype]) if figtype != "" else figname
figname = "_".join([figname, figtype]) if figtype != "" else figname
Stokes_hdul = proj_fits.save_Stokes(
I_stokes,
Q_stokes,
U_stokes,
Stokes_cov,
Stokes_stat_cov,
P,
debiased_P,
s_P,
@@ -268,29 +255,32 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
s_PA_P,
header_stokes,
data_mask,
savename,
figname,
data_folder=data_folder,
return_hdul=True,
flux_data=np.array([flux_data, flux_error, flux_mask]),
flux_head=flux_head,
)
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
# Step 5:
# crop to desired region of interest (roi)
if crop:
savename += "_crop"
figname += "_crop"
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
stokescrop.crop()
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
Stokes_hdul, header_stokes = stokescrop.hdul_crop, stokescrop.hdul_crop[0].header
outfiles.append("/".join([data_folder, Stokes_hdul["I_STOKES"].header["FILENAME"] + ".fits"]))
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
print(
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
flux_head["PHOTPLAM"],
*sci_not(flux_data[flux_mask].sum() * flux_head["PHOTFLAM"], np.sqrt(np.sum(flux_error[flux_mask] ** 2)) * flux_head["PHOTFLAM"], 2, out=int),
header_stokes["PHOTPLAM"],
*sci_not(
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
2,
out=int,
),
)
)
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
@@ -313,12 +303,12 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename=figname,
savename="_".join([figname]),
plots_folder=plots_folder,
)
for figtype, figsuffix in zip(
["FluxDensity", "Intensity", "Pol_flux", "Pol_deg", "Pol_ang", "I_err", "P_err", "SNRi", "SNRp", "confp"],
["F", "I", "P_flux", "P", "PA", "I_err", "P_err", "SNRi", "SNRp", "confP"],
["Intensity", "Pol_flux", "Pol_deg", "Pol_ang", "I_err", "P_err", "SNRi", "SNRp", "confp"],
["I", "P_flux", "P", "PA", "I_err", "P_err", "SNRi", "SNRp", "confP"],
):
try:
proj_plots.polarization_map(
@@ -329,7 +319,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
flux_lim=flux_lim,
step_vec=step_vec,
scale_vec=scale_vec,
savename="_".join([savename, figsuffix]),
savename="_".join([figname, figsuffix]),
plots_folder=plots_folder,
display=figtype,
)
@@ -337,7 +327,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
pass
elif not interactive:
proj_plots.polarization_map(
deepcopy(Stokes_hdul), data_mask, P_cut=P_cut, SNRi_cut=SNRi_cut, savename=savename, plots_folder=plots_folder, display="integrate"
deepcopy(Stokes_hdul), data_mask, P_cut=P_cut, SNRi_cut=SNRi_cut, savename=figname, plots_folder=plots_folder, display="integrate"
)
elif pxscale.lower() not in ["full", "integrate"]:
proj_plots.pol_map(Stokes_hdul, P_cut=P_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, scale_vec=scale_vec, flux_lim=flux_lim)

View File

@@ -1,2 +1,2 @@
from .lib import *
from .FOC_reduction import main
from . import FOC_reduction

View File

@@ -18,6 +18,7 @@ import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import numpy as np
from astropy.time import Time
from lib.plots import plot_obs
from matplotlib.colors import LogNorm
from matplotlib.patches import Rectangle
from scipy.optimize import curve_fit
@@ -135,8 +136,6 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, binning=Non
fig2.subplots_adjust(hspace=0, wspace=0, right=1.0)
fig2.colorbar(im2, ax=ax2, location="right", shrink=0.60, aspect=50, pad=0.025, label=r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
from .plots import plot_obs
if savename is not None:
this_savename = deepcopy(savename)
if savename[-4:] not in [".png", ".jpg", ".pdf"]:
@@ -279,7 +278,7 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
return n_data_array, n_error_array, headers, background
def bkg_hist(data, error, mask, headers, n_bins=None, subtract_error=True, display=False, savename=None, plots_folder=""):
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
"""
----------
Inputs:
@@ -334,15 +333,29 @@ def bkg_hist(data, error, mask, headers, n_bins=None, subtract_error=True, displ
for i, image in enumerate(data):
# Compute the Count-rate histogram for the image
n_mask = np.logical_and(mask, image > 0.0)
if sub_type is not None:
if isinstance(sub_type, int):
n_bins = sub_type
elif sub_type.lower() in ["square-root", "squareroot", "sqrt"]:
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
elif sub_type.lower() in ["sturges"]:
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int) + 1 # Sturges
elif sub_type.lower() in ["rice"]:
n_bins = 2 * np.fix(np.power(image[n_mask].size, 1 / 3)).astype(int) # Rice
elif sub_type.lower() in ["freedman-diaconis", "freedmandiaconis", "freedman", "diaconis"]:
n_bins = np.fix(
(image[n_mask].max() - image[n_mask].min())
/ (2 * np.subtract(*np.percentile(image[n_mask], [75, 25])) / np.power(image[n_mask].size, 1 / 3))
).astype(int) # Freedman-Diaconis
else: # Fallback
n_bins = np.fix((image[n_mask].max() - image[n_mask].min()) / (3.5 * image[n_mask].std() / np.power(image[n_mask].size, 1 / 3))).astype(
int
) # Scott
else: # Default statistic
n_bins = np.fix((image[n_mask].max() - image[n_mask].min()) / (3.5 * image[n_mask].std() / np.power(image[n_mask].size, 1 / 3))).astype(
int
) # Scott
if not isinstance(n_bins, int) and n_bins not in ["auto", "fd", "doane", "scott", "stone", "rice", "sturges", "sqrt"]:
match n_bins.lower():
case "square-root" | "squareroot":
n_bins = "sqrt"
case "freedman-diaconis" | "freedmandiaconis":
n_bins = "fd"
case _:
n_bins = "scott"
hist, bin_edges = np.histogram(np.log(image[n_mask]), bins=n_bins)
histograms.append(hist)
binning.append(np.exp(bin_centers(bin_edges)))

View File

@@ -47,9 +47,9 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
wcs_array.append(WCS(header=f[0].header, fobj=f).celestial)
f.flush()
# Save pixel area for flux density computation
if "PXFORMT" in headers[i].keys() and headers[i]["PXFORMT"] == "NORMAL":
if headers[i]["PXFORMT"] == "NORMAL":
headers[i]["PXAREA"] = 1.96e-4 # 14x14 milliarcsec squared pixel area in arcsec^2
elif "PXFORMT" in headers[i].keys() and headers[i]["PXFORMT"] == "ZOOM":
elif headers[i]["PXFORMT"] == "ZOOM":
headers[i]["PXAREA"] = 4.06e-4 # 29x14 milliarcsec squared pixel area in arcsec^2
else:
headers[i]["PXAREA"] = 1.0 # unknown default to 1 arcsec^2
@@ -90,10 +90,10 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
# force WCS for POL60 to have same pixel size as POL0 and POL120
is_pol60 = np.array([head["filtnam1"].lower() == "pol60" for head in headers], dtype=bool)
cdelt = np.round(np.array([WCS(head).wcs.cdelt[:2] for head in headers]), 10)
if np.any(is_pol60) and np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
raise ValueError("Not all images have same pixel size")
elif np.any(is_pol60):
else:
for i in np.arange(len(headers))[is_pol60]:
headers[i]["cdelt1"], headers[i]["cdelt2"] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
@@ -110,6 +110,7 @@ def save_Stokes(
Q_stokes,
U_stokes,
Stokes_cov,
Stokes_stat_cov,
P,
debiased_P,
s_P,
@@ -122,8 +123,6 @@ def save_Stokes(
filename,
data_folder="",
return_hdul=False,
flux_data=None,
flux_head=None,
):
"""
Save computed polarimetry parameters to a single fits file,
@@ -179,7 +178,7 @@ def save_Stokes(
header["PROPOSID"] = (header_stokes["PROPOSID"], "PEP proposal identifier for observation")
header["TARGNAME"] = (header_stokes["TARGNAME"], "Target name")
header["ORIENTAT"] = (header_stokes["ORIENTAT"], "Angle between North and the y-axis of the image")
header["FILENAME"] = (filename, "Original filename")
header["FILENAME"] = (filename, "ORIGINAL FILENAME")
header["BKG_TYPE"] = (header_stokes["BKG_TYPE"], "Bkg estimation method used during reduction")
header["BKG_SUB"] = (header_stokes["BKG_SUB"], "Amount of bkg subtracted from images")
header["SMOOTH"] = (header_stokes["SMOOTH"] if "SMOOTH" in list(header_stokes.keys()) else "None", "Smoothing method used during reduction")
@@ -203,11 +202,15 @@ def save_Stokes(
s_PA_P = s_PA_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
new_Stokes_stat_cov = np.zeros((*Stokes_stat_cov.shape[:-2], *shape[::-1]))
for i in range(3):
for j in range(3):
Stokes_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
Stokes_stat_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
new_Stokes_stat_cov[i, j] = Stokes_stat_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
Stokes_cov = new_Stokes_cov
Stokes_stat_cov = new_Stokes_stat_cov
data_mask = data_mask[vertex[2] : vertex[3], vertex[0] : vertex[1]]
data_mask = data_mask.astype(float, copy=False)
@@ -215,48 +218,31 @@ def save_Stokes(
# Create HDUList object
hdul = fits.HDUList([])
# Add Flux density as PrimaryHDU
if flux_data is None:
header["DATATYPE"] = ("I_stokes", "type of data stored in the HDU")
I_stokes[(1 - data_mask).astype(bool)] = 0.0
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
primary_hdu.name = "I_stokes"
hdul.append(primary_hdu)
else:
flux_head["FILENAME"] = header["FILENAME"]
head = WCS(flux_head).deepcopy().to_header()
for key in [key for key in header.keys() if key not in ["SMOOTH", "SAMPLING"]]:
try:
head[key] = flux_head[key]
except KeyError:
head[key] = header[key]
header["DATATYPE"] = ("Flux_density", "type of data stored in the HDU")
primary_hdu = fits.PrimaryHDU(data=flux_data, header=head)
primary_hdu.name = "Flux_density"
hdul.append(primary_hdu)
header["DATATYPE"] = ("I_stokes", "type of data stored in the HDU")
I_stokes[(1 - data_mask).astype(bool)] = 0.0
image_hdu = fits.ImageHDU(data=I_stokes, header=header)
image_hdu.name = "I_stokes"
hdul.append(image_hdu)
# Add I_stokes as PrimaryHDU
header["datatype"] = ("I_stokes", "type of data stored in the HDU")
I_stokes[(1 - data_mask).astype(bool)] = 0.0
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
primary_hdu.name = "I_stokes"
hdul.append(primary_hdu)
# Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
for data, name in [
[Q_stokes, "Q_stokes"],
[U_stokes, "U_stokes"],
[Stokes_cov, "IQU_cov_matrix"],
[Stokes_stat_cov, "IQU_stat_cov_matrix"],
[P, "Pol_deg"],
[debiased_P, "Pol_deg_debiased"],
[s_P, "Pol_deg_err"],
[s_P_P, "Pol_deg_err_Poisson_noise"],
[s_P_P, "Pol_deg_stat_err"],
[PA, "Pol_ang"],
[s_PA, "Pol_ang_err"],
[s_PA_P, "Pol_ang_err_Poisson_noise"],
[s_PA_P, "Pol_ang_stat_err"],
[data_mask, "Data_mask"],
]:
hdu_header = header.copy()
hdu_header["DATATYPE"] = name
if not name == "IQU_cov_matrix":
hdu_header["datatype"] = name
if not name[-10:] == "cov_matrix":
data[(1 - data_mask).astype(bool)] = 0.0
hdu = fits.ImageHDU(data=data, header=hdu_header)
hdu.name = name

View File

@@ -133,12 +133,6 @@ def plot_obs(data_array, headers, rectangle=None, shifts=None, savename=None, pl
ax_curr.arrow(x, y, dx, dy, length_includes_head=True, width=0.1, head_width=0.3, color="g")
ax_curr.plot([x, x], [0, data.shape[0] - 1], "--", lw=2, color="g", alpha=0.85)
ax_curr.plot([0, data.shape[1] - 1], [y, y], "--", lw=2, color="g", alpha=0.85)
# position of centroid
ax_curr.plot([data.shape[1] / 2, data.shape[1] / 2], [0, data.shape[0] - 1], "--", lw=2, color="b", alpha=0.85)
ax_curr.plot([0, data.shape[1] - 1], [data.shape[0] / 2, data.shape[0] / 2], "--", lw=2, color="b", alpha=0.85)
cr_x, cr_y = head["CRPIX1"], head["CRPIX2"]
# Plot WCS reference point
ax_curr.plot([cr_x], [cr_y], "+", lw=2, color="r", alpha=0.85)
if rectangle is not None:
x, y, width, height, angle, color = rectangle[i]
ax_curr.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
@@ -195,7 +189,7 @@ def plot_Stokes(Stokes, savename=None, plots_folder=""):
for dataset in [stkI, stkQ, stkU]:
dataset[np.logical_not(data_mask)] = np.nan
wcs = WCS(Stokes["I_STOKES"]).deepcopy()
wcs = WCS(Stokes[0]).deepcopy()
# Plot figure
plt.rcParams.update({"font.size": 14})
@@ -294,9 +288,6 @@ def polarization_map(
The figure and ax created for interactive contour maps.
"""
# Get data
flux = Stokes[0].data[0].copy() * Stokes[0].header["PHOTFLAM"]
flux_error = Stokes[0].data[1].copy() * Stokes[0].header["PHOTFLAM"]
flux_mask = Stokes[0].data[2].astype(bool).copy()
stkI = Stokes["I_stokes"].data.copy()
stkQ = Stokes["Q_stokes"].data.copy()
stkU = Stokes["U_stokes"].data.copy()
@@ -311,20 +302,6 @@ def polarization_map(
data_mask = np.zeros(stkI.shape).astype(bool)
data_mask[stkI > 0.0] = True
wcs = WCS(Stokes["I_STOKES"]).deepcopy()
pivot_wav = Stokes["I_STOKES"].header["photplam"]
convert_flux = Stokes["I_STOKES"].header["photflam"]
# Get integrated flux values from sum
I_diluted = stkI[data_mask].sum() * convert_flux
I_diluted_err = np.sqrt(np.sum(stk_cov[0, 0][data_mask])) * convert_flux
# Get integrated polarization values from header
P_diluted = Stokes["I_STOKES"].header["P_int"]
P_diluted_err = Stokes["I_STOKES"].header["sP_int"]
PA_diluted = Stokes["I_STOKES"].header["PA_int"]
PA_diluted_err = Stokes["I_STOKES"].header["sPA_int"]
# Compute confidence level map
QN, UN, QN_ERR, UN_ERR = np.full((4, stkI.shape[0], stkI.shape[1]), np.nan)
for nflux, sflux in zip([QN, UN, QN_ERR, UN_ERR], [stkQ, stkU, np.sqrt(stk_cov[1, 1]), np.sqrt(stk_cov[2, 2])]):
@@ -337,8 +314,12 @@ def polarization_map(
for j in range(3):
stk_cov[i][j][np.logical_not(data_mask)] = np.nan
wcs = WCS(Stokes[0]).deepcopy()
pivot_wav = Stokes[0].header["photplam"]
convert_flux = Stokes[0].header["photflam"]
# Plot Stokes parameters map
if display is None or display.lower() in ["pol", "polarization", "polarisation", "pol_deg", "p"]:
if display is None or display.lower() in ["default"]:
plot_Stokes(Stokes, savename=savename, plots_folder=plots_folder)
# Compute SNR and apply cuts
@@ -379,10 +360,10 @@ def polarization_map(
if fig is None:
ratiox = max(int(stkI.shape[1] / (stkI.shape[0])), 1)
ratioy = max(int((stkI.shape[0]) / stkI.shape[1]), 1)
fig = plt.figure(figsize=(7 * ratiox, 7 * ratioy), layout="constrained")
fig = plt.figure(figsize=(8 * ratiox, 8 * ratioy), layout="constrained")
if ax is None:
ax = fig.add_subplot(111, projection=wcs)
ax.set(aspect="equal", fc="k", xlim=(0, stkI.shape[1]), ylim=(0, stkI.shape[0]))
ax.set(aspect="equal", fc="k") # , ylim=[-0.05 * stkI.shape[0], 1.05 * stkI.shape[0]])
# fig.subplots_adjust(hspace=0, wspace=0, left=0.102, right=1.02)
# ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
@@ -428,25 +409,7 @@ def polarization_map(
ax.set_facecolor("white")
font_color = "black"
if display.lower() in ["f", "flux", "fluxdensity"]:
# If no display selected, show intensity map
display = "f"
if flux_lim is not None:
vmin, vmax = flux_lim
else:
vmin, vmax = np.max(flux[flux > 0.0]) / 2e3, np.max(flux[flux > 0.0])
imflux, cr = flux.copy(), WCS(Stokes[0].header).wcs.crpix.astype(int)
imflux[cr[1] - 1 : cr[1] + 2, cr[0] - 1 : cr[0] + 2] = np.nan
im = ax.imshow(
imflux, transform=ax.get_transform(WCS(Stokes[0].header).celestial), norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0
)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
levelsF = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * vmax
print("Flux density contour levels : ", levelsF)
ax.contour(flux, levels=levelsF, transform=ax.get_transform(WCS(Stokes[0].header).celestial), colors="grey", linewidths=0.5)
ax.plot(*WCS(Stokes[1]).wcs.crpix, "g+")
I_diluted, I_diluted_err = np.sum(flux[flux_mask]), np.sqrt(np.sum(flux_error[flux_mask] ** 2))
elif display.lower() in ["i", "intensity"]:
if display.lower() in ["i", "intensity"]:
# If no display selected, show intensity map
display = "i"
if flux_lim is not None:
@@ -456,13 +419,10 @@ def polarization_map(
else:
vmin, vmax = 1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stkI > 0.0]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
im = ax.imshow(stkI * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
ax.plot(*WCS(Stokes[1]).wcs.crpix, "g+")
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
# levelsI = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * vmax
# print("Stokes I contour levels : ", levelsI)
# ax.contour(stkI * convert_flux, levels=levelsI, colors="grey", linewidths=0.5)
levelsF = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * np.max(flux[flux > 0.0])
ax.contour(flux, levels=levelsF, transform=ax.get_transform(WCS(Stokes[0].header).celestial), colors="grey", linewidths=0.5)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
levelsI = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * vmax
print("Flux density contour levels : ", levelsI)
ax.contour(stkI * convert_flux, levels=levelsI, colors="grey", linewidths=0.5)
elif display.lower() in ["pf", "pol_flux"]:
# Display polarization flux
display = "pf"
@@ -475,36 +435,34 @@ def polarization_map(
else:
vmin, vmax = 1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stkI > 0.0]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
pfmax = (stkI[stkI > 0.0] * pol[stkI > 0.0] * convert_flux).max()
im = ax.imshow(stkI * convert_flux * pol, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(
im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
)
im = ax.imshow(stkI * convert_flux * pol, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
# levelsPf = np.linspace(0.0.60, 0.50, 5) * pfmax
levelsPf = np.array([1.73, 13.0, 33.0, 66.0]) / 100.0 * pfmax
levelsPf = np.array([13.0, 33.0, 66.0]) / 100.0 * pfmax
print("Polarized flux density contour levels : ", levelsPf)
ax.contour(stkI * convert_flux * pol, levels=levelsPf, colors="grey", linewidths=0.5)
elif display.lower() in ["p", "pol", "pol_deg"]:
# Display polarization degree map
display = "p"
vmin, vmax = 0.0, min(pol[np.isfinite(pol)].max(), 1.0) * 100.0
im = ax.imshow(pol * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$P$ [%]")
vmin, vmax = 0.0, min(pol[pol > pol_err].max(), 1.0) * 100.0
im = ax.imshow(pol * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P$ [%]")
elif display.lower() in ["pa", "pang", "pol_ang"]:
# Display polarization degree map
display = "pa"
vmin, vmax = 0.0, 180.0
im = ax.imshow(princ_angle(pang), vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$\theta_P$ [°]")
im = ax.imshow(princ_angle(pang), vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\theta_P$ [°]")
elif display.lower() in ["s_p", "pol_err", "pol_deg_err"]:
# Display polarization degree error map
display = "s_p"
if (SNRp > P_cut).any():
vmin, vmax = 0.0, np.max([pol_err[SNRp > P_cut].max(), 1.0]) * 100.0
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0)
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err))
else:
vmin, vmax = 0.0, 100.0
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$\sigma_P$ [%]")
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err))
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_P$ [%]")
elif display.lower() in ["s_i", "i_err"]:
# Display intensity error map
display = "s_i"
@@ -513,59 +471,65 @@ def polarization_map(
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
)
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0)
im = ax.imshow(
np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err)
)
else:
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
elif display.lower() in ["snri"]:
# Display I_stokes signal-to-noise map
display = "snri"
vmin, vmax = 0.0, np.max(SNRi[np.isfinite(SNRi)])
if vmax * 0.99 > SNRi_cut:
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 5).astype(int)
if vmax * 0.99 > SNRi_cut + 3:
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 3).astype(int)
print("SNRi contour levels : ", levelsSNRi)
ax.contour(SNRi, levels=levelsSNRi, colors="grey", linewidths=0.5)
else:
im = ax.imshow(SNRi, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$I_{Stokes}/\sigma_{I}$")
im = ax.imshow(SNRi, aspect="equal", cmap=kwargs["cmap"])
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$I_{Stokes}/\sigma_{I}$")
elif display.lower() in ["snr", "snrp"]:
# Display polarization degree signal-to-noise map
display = "snrp"
vmin, vmax = 0.0, np.max(SNRp[np.isfinite(SNRp)])
if vmax * 0.99 > SNRp_cut:
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
levelsSNRp = np.linspace(P_cut, vmax * 0.99, 5).astype(int)
if vmax * 0.99 > SNRp_cut + 3:
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
levelsSNRp = np.linspace(SNRp_cut, vmax * 0.99, 3).astype(int)
print("SNRp contour levels : ", levelsSNRp)
ax.contour(SNRp, levels=levelsSNRp, colors="grey", linewidths=0.5)
else:
im = ax.imshow(SNRp, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$P/\sigma_{P}$")
im = ax.imshow(SNRp, aspect="equal", cmap=kwargs["cmap"])
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P/\sigma_{P}$")
elif display.lower() in ["conf", "confp"]:
# Display polarization degree signal-to-noise map
display = "confp"
vmin, vmax = 0.0, 1.0
im = ax.imshow(confP, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
im = ax.imshow(confP, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
levelsconfp = np.array([0.500, 0.900, 0.990, 0.999])
print("confp contour levels : ", levelsconfp)
ax.contour(confP, levels=levelsconfp, colors="grey", linewidths=0.5)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$Conf_{P}$")
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$Conf_{P}$")
else:
# Defaults to intensity map
if flux_lim is not None:
vmin, vmax = flux_lim
elif mask.sum() > 0.0:
vmin, vmax = 1.0 * np.mean(np.sqrt(stk_cov[0, 0][mask]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
else:
vmin, vmax = np.max(flux[flux > 0.0] * convert_flux) / 2e3, np.max(flux[flux > 0.0] * convert_flux)
im = ax.imshow(
flux * Stokes[0].header["PHOTFLAM"],
transform=ax.get_transform(WCS(Stokes[0].header).celestial),
norm=LogNorm(vmin, vmax),
aspect="equal",
cmap=kwargs["cmap"],
alpha=1.0,
)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.015, fraction=0.03, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
I_diluted, I_diluted_err = np.sum(flux[flux_mask]), np.sqrt(np.sum(flux_error[flux_mask] ** 2))
vmin, vmax = 1.0 * np.mean(np.sqrt(stk_cov[0, 0][stkI > 0.0]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
im = ax.imshow(stkI * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
# Get integrated flux values from sum
I_diluted = stkI[data_mask].sum()
I_diluted_err = np.sqrt(np.sum(stk_cov[0, 0][data_mask]))
# Get integrated polarization values from header
P_diluted = Stokes[0].header["P_int"]
P_diluted_err = Stokes[0].header["sP_int"]
PA_diluted = Stokes[0].header["PA_int"]
PA_diluted_err = Stokes[0].header["sPA_int"]
plt.rcParams.update({"font.size": 12})
px_size = wcs.wcs.get_cdelt()[0] * 3600.0
@@ -583,12 +547,12 @@ def polarization_map(
back_length=0.0,
head_length=7.0,
head_width=7.0,
angle=-Stokes["I_STOKES"].header["orientat"],
angle=-Stokes[0].header["orientat"],
text_props={"ec": "k", "fc": font_color, "alpha": 1, "lw": 0.5},
arrow_props={"ec": "k", "fc": font_color, "alpha": 1, "lw": 1},
)
if display.lower() in ["f", "i", "s_i", "snri", "pf", "p", "pa", "s_p", "snrp", "confp"] and step_vec != 0:
if display.lower() in ["i", "s_i", "snri", "pf", "p", "pa", "s_p", "snrp", "confp"] and step_vec != 0:
if scale_vec == -1:
poldata[np.isfinite(poldata)] = 1.0 / 2.0
step_vec = 1
@@ -1212,8 +1176,6 @@ class overplot_chandra(align_maps):
other_data = deepcopy(self.other_data)
other_wcs = self.other_wcs.deepcopy()
if zoom != 1:
from scipy.ndimage import zoom as sc_zoom
other_data = sc_zoom(other_data, zoom)
other_wcs.wcs.crpix *= zoom
other_wcs.wcs.cdelt /= zoom
@@ -1935,7 +1897,7 @@ class crop_map(object):
else:
self.ax = ax
self.mask_alpha = 0.75
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
self.embedded = True
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)")
self.display(self.data, self.wcs, self.map_convert, **self.kwargs)
@@ -1996,7 +1958,7 @@ class crop_map(object):
self.display()
if self.fig.canvas.manager.toolbar.mode == "":
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
self.RSextent = deepcopy(self.extent)
self.RScenter = deepcopy(self.center)
@@ -2056,7 +2018,7 @@ class crop_map(object):
self.ax.set_ylim(0, ylim)
if self.fig.canvas.manager.toolbar.mode == "":
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
self.fig.canvas.draw_idle()
@@ -2068,7 +2030,7 @@ class crop_map(object):
def crop(self) -> None:
if self.fig.canvas.manager.toolbar.mode == "":
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
self.bapply.on_clicked(self.apply_crop)
self.breset.on_clicked(self.reset_crop)
self.fig.canvas.mpl_connect("close_event", self.on_close)
@@ -2117,7 +2079,7 @@ class crop_Stokes(crop_map):
# Crop dataset
for dataset in self.hdul_crop:
if dataset.header["datatype"] == "IQU_cov_matrix":
if dataset.header["datatype"][-10:] == "cov_matrix":
stokes_cov = np.zeros((3, 3, shape[1], shape[0]))
for i in range(3):
for j in range(3):
@@ -2140,18 +2102,24 @@ class crop_Stokes(crop_map):
self.on_close(event)
if self.fig.canvas.manager.toolbar.mode == "":
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
# Update integrated values
mask = np.logical_and(self.hdul_crop["data_mask"].data.astype(bool), self.hdul_crop[0].data > 0)
I_diluted = self.hdul_crop["i_stokes"].data[mask].sum()
Q_diluted = self.hdul_crop["q_stokes"].data[mask].sum()
U_diluted = self.hdul_crop["u_stokes"].data[mask].sum()
I_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 0][mask]))
Q_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[1, 1][mask]))
U_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[2, 2][mask]))
IQ_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[1, 2][mask] ** 2))
mask = np.logical_and(self.hdul_crop["DATA_MASK"].data.astype(bool), self.hdul_crop[0].data > 0)
I_diluted = self.hdul_crop["I_STOKES"].data[mask].sum()
Q_diluted = self.hdul_crop["Q_STOKES"].data[mask].sum()
U_diluted = self.hdul_crop["U_STOKES"].data[mask].sum()
I_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 0][mask]))
Q_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[1, 1][mask]))
U_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[2, 2][mask]))
IQ_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[1, 2][mask] ** 2))
I_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 0][mask]))
Q_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[1, 1][mask]))
U_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[2, 2][mask]))
IQ_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 1][mask] ** 2))
IU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 2][mask] ** 2))
QU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[1, 2][mask] ** 2))
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
@@ -2160,6 +2128,18 @@ class crop_Stokes(crop_map):
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
)
P_diluted_stat_err = (
P_diluted
/ I_diluted
* np.sqrt(
I_diluted_stat_err
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
+ 1.0
/ (I_diluted**2 * P_diluted**4)
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
)
)
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
@@ -2169,7 +2149,7 @@ class crop_Stokes(crop_map):
for dataset in self.hdul_crop:
if dataset.header["FILENAME"][-4:] != "crop":
dataset.header["FILENAME"] += "_crop"
dataset.header["P_int"] = (P_diluted, "Integrated polarization degree")
dataset.header["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
dataset.header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
dataset.header["PA_int"] = (PA_diluted, "Integrated polarization angle")
dataset.header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
@@ -2479,9 +2459,9 @@ class pol_map(object):
self.conf = PCconf(self.QN, self.UN, self.QN_ERR, self.UN_ERR)
# Get data
self.targ = self.Stokes["I_STOKES"].header["targname"]
self.pivot_wav = self.Stokes["I_STOKES"].header["photplam"]
self.map_convert = self.Stokes["I_STOKES"].header["photflam"]
self.targ = self.Stokes[0].header["targname"]
self.pivot_wav = self.Stokes[0].header["photplam"]
self.map_convert = self.Stokes[0].header["photflam"]
# Create figure
plt.rcParams.update({"font.size": 10})
@@ -2503,9 +2483,11 @@ class pol_map(object):
ax_snr_reset = self.fig.add_axes([0.060, 0.020, 0.05, 0.02])
ax_snr_conf = self.fig.add_axes([0.115, 0.020, 0.05, 0.02])
SNRi_max = np.max(self.I[self.IQU_cov[0, 0] > 0.0] / np.sqrt(self.IQU_cov[0, 0][self.IQU_cov[0, 0] > 0.0]))
SNRp_max = np.max(self.P[self.s_P > 0.0] / self.s_P[self.s_P > 0.0])
SNRp_max = np.max(self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0])
s_I_cut = Slider(ax_I_cut, r"$SNR^{I}_{cut}$", 1.0, int(SNRi_max * 0.95), valstep=1, valinit=self.SNRi_cut)
self.s_P_cut = Slider(self.ax_P_cut, r"$Conf^{P}_{cut}$", 0.50, 1.0, valstep=[0.500, 0.900, 0.990, 0.999], valinit=self.P_cut if P_cut <= 1.0 else 0.99)
self.P_ERR_cut = Slider(
self.ax_P_cut, r"$Conf^{P}_{cut}$", 0.50, 1.0, valstep=[0.500, 0.900, 0.990, 0.999], valinit=self.P_cut if P_cut <= 1.0 else 0.99
)
s_vec_sc = Slider(ax_vec_sc, r"Vec scale", 0.0, 10.0, valstep=1, valinit=self.scale_vec)
b_snr_reset = Button(ax_snr_reset, "Reset")
b_snr_reset.label.set_fontsize(8)
@@ -2533,7 +2515,7 @@ class pol_map(object):
def reset_snr(event):
s_I_cut.reset()
self.s_P_cut.reset()
self.P_ERR_cut.reset()
s_vec_sc.reset()
def toggle_snr_conf(event=None):
@@ -2542,21 +2524,21 @@ class pol_map(object):
if self.snr_conf:
self.snr_conf = 0
b_snr_conf.label.set_text("Conf")
self.s_P_cut = Slider(
self.P_ERR_cut = Slider(
self.ax_P_cut, r"$SNR^{P}_{cut}$", 1.0, max(int(SNRp_max * 0.95), 3), valstep=1, valinit=self.P_cut if P_cut >= 1.0 else 3
)
else:
self.snr_conf = 1
b_snr_conf.label.set_text("SNR")
self.s_P_cut = Slider(
self.P_ERR_cut = Slider(
self.ax_P_cut, r"$Conf^{P}_{cut}$", 0.50, 1.0, valstep=[0.500, 0.900, 0.990, 0.999], valinit=self.P_cut if P_cut <= 1.0 else 0.99
)
self.s_P_cut.on_changed(update_snrp)
update_snrp(self.s_P_cut.val)
self.P_ERR_cut.on_changed(update_snrp)
update_snrp(self.P_ERR_cut.val)
self.fig.canvas.draw_idle()
s_I_cut.on_changed(update_snri)
self.s_P_cut.on_changed(update_snrp)
self.P_ERR_cut.on_changed(update_snrp)
s_vec_sc.on_changed(update_vecsc)
b_snr_reset.on_clicked(reset_snr)
b_snr_conf.on_clicked(toggle_snr_conf)
@@ -2575,7 +2557,7 @@ class pol_map(object):
def select_roi(event):
if self.data is None:
self.data = self.Stokes["I_STOKES"].data
self.data = self.Stokes[0].data
if self.selected:
self.selected = False
self.region = deepcopy(self.select_instance.mask.astype(bool))
@@ -2617,7 +2599,7 @@ class pol_map(object):
def select_aperture(event):
if self.data is None:
self.data = self.Stokes["I_STOKES"].data
self.data = self.Stokes[0].data
if self.selected:
self.selected = False
self.select_instance.update_mask()
@@ -2674,7 +2656,7 @@ class pol_map(object):
def select_slit(event):
if self.data is None:
self.data = self.Stokes["I_STOKES"].data
self.data = self.Stokes[0].data
if self.selected:
self.selected = False
self.select_instance.update_mask()
@@ -2951,31 +2933,7 @@ class pol_map(object):
@property
def wcs(self):
return WCS(self.Stokes["I_STOKES"].header).celestial.deepcopy()
@property
def Flux(self):
return self.Stokes[0].data[0] * self.Stokes[0].header["PHOTFLAM"]
@property
def Flux_err(self):
return self.Stokes[0].data[1] * self.Stokes[0].header["PHOTFLAM"]
@property
def Flux_mask(self):
return self.Stokes[0].data[2].astype(bool)
@property
def Flux(self):
return self.Stokes[0].data[0] * self.Stokes[0].header["PHOTFLAM"]
@property
def Flux_err(self):
return self.Stokes[0].data[1] * self.Stokes[0].header["PHOTFLAM"]
@property
def Flux_mask(self):
return self.Stokes[0].data[2].astype(bool)
return WCS(self.Stokes[0].header).celestial.deepcopy()
@property
def I(self):
@@ -3021,12 +2979,16 @@ class pol_map(object):
def IQU_cov(self):
return self.Stokes["IQU_COV_MATRIX"].data
@property
def IQU_stat_cov(self):
return self.Stokes["IQU_STAT_COV_MATRIX"].data
@property
def P(self):
return self.Stokes["POL_DEG_DEBIASED"].data
@property
def s_P(self):
def P_ERR(self):
return self.Stokes["POL_DEG_ERR"].data
@property
@@ -3034,12 +2996,12 @@ class pol_map(object):
return self.Stokes["POL_ANG"].data
@property
def s_PA(self):
def PA_ERR(self):
return self.Stokes["POL_ANG_ERR"].data
@property
def data_mask(self):
return self.Stokes["DATA_MASK"].data.astype(bool)
return self.Stokes["DATA_MASK"].data
def set_data_mask(self, mask):
self.Stokes["DATA_MASK"].data = mask.astype(float)
@@ -3050,7 +3012,7 @@ class pol_map(object):
SNRp_mask, SNRi_mask = (np.zeros(self.P.shape).astype(bool), np.zeros(self.I.shape).astype(bool))
SNRi_mask[s_I > 0.0] = self.I[s_I > 0.0] / s_I[s_I > 0.0] > self.SNRi
if self.SNRp >= 1.0:
SNRp_mask[self.s_P > 0.0] = self.P[self.s_P > 0.0] / self.s_P[self.s_P > 0.0] > self.SNRp
SNRp_mask[self.P_ERR > 0.0] = self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0] > self.SNRp
else:
SNRp_mask = self.conf > self.SNRp
return np.logical_and(SNRi_mask, SNRp_mask)
@@ -3110,7 +3072,7 @@ class pol_map(object):
back_length=0.0,
head_length=7.5,
head_width=7.5,
angle=-self.Stokes["I_STOKES"].header["orientat"],
angle=-self.Stokes[0].header["orientat"],
color="white",
text_props={"ec": None, "fc": "w", "alpha": 1, "lw": 0.4},
arrow_props={"ec": None, "fc": "w", "alpha": 1, "lw": 1},
@@ -3119,19 +3081,17 @@ class pol_map(object):
def display(self, fig=None, ax=None, flux_lim=None):
kwargs = dict([])
if self.display_selection is None:
self.display_selection = "total_flux"
if flux_lim is None:
flux_lim = self.flux_lim
if self.display_selection is None or self.display_selection.lower() in ["total_flux"]:
self.data = self.Flux # self.I * self.map_convert
if self.display_selection.lower() in ["total_flux"]:
self.data = self.I * self.map_convert
if flux_lim is None:
vmin, vmax = (1.0 / 2.0 * np.median(self.data[self.data > 0.0]), np.max(self.data[self.data > 0.0]))
else:
vmin, vmax = flux_lim
kwargs["norm"] = LogNorm(vmin, vmax)
if ax is None:
kwargs["transform"] = self.ax.get_transform(WCS(self.Stokes[0].header).celestial)
else:
kwargs["transform"] = ax.get_transform(WCS(self.Stokes[0].header).celestial)
label = r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ["pol_flux"]:
self.data = self.I * self.map_convert * self.P
@@ -3143,11 +3103,13 @@ class pol_map(object):
label = r"$P \cdot F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ["pol_deg"]:
self.data = self.P * 100.0
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.P > self.s_P])
kwargs["vmin"], kwargs["vmax"] = 0.0, min(np.max(self.data[self.P > self.P_ERR]), 100.0)
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
label = r"$P$ [%]"
elif self.display_selection.lower() in ["pol_ang"]:
self.data = princ_angle(self.PA)
kwargs["vmin"], kwargs["vmax"] = 0, 180.0
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
label = r"$\theta_{P}$ [°]"
elif self.display_selection.lower() in ["snri"]:
s_I = np.sqrt(self.IQU_cov[0, 0])
@@ -3158,7 +3120,7 @@ class pol_map(object):
label = r"$I_{Stokes}/\sigma_{I}$"
elif self.display_selection.lower() in ["snrp"]:
SNRp = np.zeros(self.P.shape)
SNRp[self.s_P > 0.0] = self.P[self.s_P > 0.0] / self.s_P[self.s_P > 0.0]
SNRp[self.P_ERR > 0.0] = self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0]
self.data = SNRp
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.data > 0.0])
label = r"$P/\sigma_{P}$"
@@ -3172,7 +3134,6 @@ class pol_map(object):
if hasattr(self, "im"):
self.im.remove()
self.im = ax.imshow(self.data, aspect="equal", cmap="inferno", **kwargs)
ax.set(xlim=(0, self.I.shape[1]), ylim=(0, self.I.shape[0]))
plt.rcParams.update({"font.size": 14})
self.cbar = fig.colorbar(self.im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=label)
plt.rcParams.update({"font.size": 10})
@@ -3180,8 +3141,8 @@ class pol_map(object):
return self.im
else:
im = ax.imshow(self.data, aspect="equal", cmap="inferno", **kwargs)
ax.set_xlim(0, self.I.shape[1])
ax.set_ylim(0, self.I.shape[0])
ax.set_xlim(0, self.data.shape[1])
ax.set_ylim(0, self.data.shape[0])
plt.rcParams.update({"font.size": 14})
fig.colorbar(im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=label)
plt.rcParams.update({"font.size": 10})
@@ -3205,31 +3166,31 @@ class pol_map(object):
ax = self.ax
if hasattr(self, "quiver"):
self.quiver.remove()
self.quiver = ax.quiver(
X[:: self.step_vec, :: self.step_vec],
Y[:: self.step_vec, :: self.step_vec],
XY_U[:: self.step_vec, :: self.step_vec],
XY_V[:: self.step_vec, :: self.step_vec],
units="xy",
scale=1.0 / scale_vec,
scale_units="xy",
pivot="mid",
headwidth=0.0,
headlength=0.0,
headaxislength=0.0,
width=0.3,
linewidth=0.6,
color="white",
edgecolor="black",
)
if self.pa_err:
self.quiver = ax.quiver(
X[:: self.step_vec, :: self.step_vec],
Y[:: self.step_vec, :: self.step_vec],
XY_U[:: self.step_vec, :: self.step_vec],
XY_V[:: self.step_vec, :: self.step_vec],
units="xy",
scale=1.0 / scale_vec,
scale_units="xy",
pivot="mid",
headwidth=0.0,
headlength=0.0,
headaxislength=0.0,
width=0.1,
# linewidth=0.6,
color="black",
edgecolor="black",
)
XY_U_err1, XY_V_err1 = (
P_cut * np.cos(np.pi / 2.0 + (self.PA + 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA + 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.cos(np.pi / 2.0 + (self.PA + 3.0 * self.P_ERRA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA + 3.0 * self.P_ERRA) * np.pi / 180.0),
)
XY_U_err2, XY_V_err2 = (
P_cut * np.cos(np.pi / 2.0 + (self.PA - 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA - 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.cos(np.pi / 2.0 + (self.PA - 3.0 * self.P_ERRA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA - 3.0 * self.P_ERRA) * np.pi / 180.0),
)
if hasattr(self, "quiver_err1"):
self.quiver_err1.remove()
@@ -3271,25 +3232,6 @@ class pol_map(object):
edgecolor="black",
ls="dashed",
)
else:
self.quiver = ax.quiver(
X[:: self.step_vec, :: self.step_vec],
Y[:: self.step_vec, :: self.step_vec],
XY_U[:: self.step_vec, :: self.step_vec],
XY_V[:: self.step_vec, :: self.step_vec],
units="xy",
scale=1.0 / scale_vec,
scale_units="xy",
pivot="mid",
headwidth=0.0,
headlength=0.0,
headaxislength=0.0,
width=0.3,
linewidth=0.6,
color="white",
edgecolor="black",
)
fig.canvas.draw_idle()
return self.quiver
else:
@@ -3312,12 +3254,12 @@ class pol_map(object):
)
if self.pa_err:
XY_U_err1, XY_V_err1 = (
P_cut * np.cos(np.pi / 2.0 + (self.PA + 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA + 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.cos(np.pi / 2.0 + (self.PA + 3.0 * self.P_ERRA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA + 3.0 * self.P_ERRA) * np.pi / 180.0),
)
XY_U_err2, XY_V_err2 = (
P_cut * np.cos(np.pi / 2.0 + (self.PA - 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA - 3.0 * self.s_PA) * np.pi / 180.0),
P_cut * np.cos(np.pi / 2.0 + (self.PA - 3.0 * self.P_ERRA) * np.pi / 180.0),
P_cut * np.sin(np.pi / 2.0 + (self.PA - 3.0 * self.P_ERRA) * np.pi / 180.0),
)
ax.quiver(
X[:: self.step_vec, :: self.step_vec],
@@ -3361,37 +3303,28 @@ class pol_map(object):
str_conf = ""
if self.region is None:
s_I = np.sqrt(self.IQU_cov[0, 0])
I_reg = (
np.sum(self.Flux[self.Flux_mask]) / self.map_convert
if self.display_selection is None or self.display_selection.lower() in ["total_flux"]
else np.sum(self.I[self.data_mask])
)
I_reg_err = (
np.sqrt(np.sum(self.Flux_err[self.Flux_mask] ** 2)) / self.map_convert
if self.display_selection is None or self.display_selection.lower() in ["total_flux"]
else np.sqrt(np.sum(s_I[self.data_mask] ** 2))
)
P_reg = self.Stokes["I_STOKES"].header["P_int"]
P_reg_err = self.Stokes["I_STOKES"].header["sP_int"]
PA_reg = self.Stokes["I_STOKES"].header["PA_int"]
PA_reg_err = self.Stokes["I_STOKES"].header["sPA_int"]
s_I = np.sqrt(self.IQU_cov[0, 0])
s_Q = np.sqrt(self.IQU_cov[1, 1])
s_U = np.sqrt(self.IQU_cov[2, 2])
s_IQ = self.IQU_cov[0, 1]
s_IU = self.IQU_cov[0, 2]
s_QU = self.IQU_cov[1, 2]
I_reg = self.I.sum()
I_reg_err = np.sqrt(np.sum(s_I**2))
debiased_P_reg = self.Stokes[0].header["P_int"]
P_reg_err = self.Stokes[0].header["sP_int"]
PA_reg = self.Stokes[0].header["PA_int"]
PA_reg_err = self.Stokes[0].header["sPA_int"]
I_cut = self.I[self.cut].sum()
Q_cut = self.Q[self.cut].sum()
U_cut = self.U[self.cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[self.cut] ** 2))
Q_cut_err = np.sqrt(np.sum(s_Q[self.cut] ** 2))
U_cut_err = np.sqrt(np.sum(s_U[self.cut] ** 2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[self.cut] ** 2))
IU_cut_err = np.sqrt(np.sum(s_IU[self.cut] ** 2))
QU_cut_err = np.sqrt(np.sum(s_QU[self.cut] ** 2))
I_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 0][self.cut]))
Q_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 1][self.cut]))
U_cut_err = np.sqrt(np.sum(self.IQU_cov[2, 2][self.cut]))
IQ_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 1][self.cut] ** 2))
IU_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 2][self.cut] ** 2))
QU_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 2][self.cut] ** 2))
I_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][self.cut]))
Q_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][self.cut]))
U_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][self.cut]))
IQ_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][self.cut] ** 2))
IU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][self.cut] ** 2))
QU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][self.cut] ** 2))
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
@@ -3404,6 +3337,16 @@ class pol_map(object):
)
/ I_cut
)
P_cut_stat_err = (
P_cut
/ I_cut
* np.sqrt(
I_cut_stat_err
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
)
)
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
@@ -3411,22 +3354,21 @@ class pol_map(object):
)
else:
s_I = np.sqrt(self.IQU_cov[0, 0])
s_Q = np.sqrt(self.IQU_cov[1, 1])
s_U = np.sqrt(self.IQU_cov[2, 2])
s_IQ = self.IQU_cov[0, 1]
s_IU = self.IQU_cov[0, 2]
s_QU = self.IQU_cov[1, 2]
I_reg = self.I[self.region].sum()
Q_reg = self.Q[self.region].sum()
U_reg = self.U[self.region].sum()
I_reg_err = np.sqrt(np.sum(s_I[self.region] ** 2))
Q_reg_err = np.sqrt(np.sum(s_Q[self.region] ** 2))
U_reg_err = np.sqrt(np.sum(s_U[self.region] ** 2))
IQ_reg_err = np.sqrt(np.sum(s_IQ[self.region] ** 2))
IU_reg_err = np.sqrt(np.sum(s_IU[self.region] ** 2))
QU_reg_err = np.sqrt(np.sum(s_QU[self.region] ** 2))
I_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 0][self.region]))
Q_reg_err = np.sqrt(np.sum(self.IQU_cov[1, 1][self.region]))
U_reg_err = np.sqrt(np.sum(self.IQU_cov[2, 2][self.region]))
IQ_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 1][self.region] ** 2))
IU_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 2][self.region] ** 2))
QU_reg_err = np.sqrt(np.sum(self.IQU_cov[1, 2][self.region] ** 2))
I_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][self.region]))
Q_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][self.region]))
U_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][self.region]))
IQ_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][self.region] ** 2))
IU_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][self.region] ** 2))
QU_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][self.region] ** 2))
conf = PCconf(QN=Q_reg / I_reg, QN_ERR=Q_reg_err / I_reg, UN=U_reg / I_reg, UN_ERR=U_reg_err / I_reg)
if 1.0 - conf > 1e-3:
@@ -3443,6 +3385,16 @@ class pol_map(object):
)
/ I_reg
)
P_reg_stat_err = (
P_reg
/ I_reg
* np.sqrt(
I_reg_stat_err
- 2.0 / (I_reg * P_reg**2) * (Q_reg * IQ_reg_stat_err + U_reg * IU_reg_stat_err)
+ 1.0 / (I_reg**2 * P_reg**4) * (Q_reg**2 * Q_reg_stat_err + U_reg**2 * U_reg_stat_err + 2.0 * Q_reg * U_reg * QU_reg_stat_err)
)
)
debiased_P_reg = np.sqrt(P_reg**2 - P_reg_stat_err**2) if P_reg**2 > P_reg_stat_err**2 else 0.0
PA_reg = princ_angle((90.0 / np.pi) * np.arctan2(U_reg, Q_reg))
PA_reg_err = (90.0 / (np.pi * (Q_reg**2 + U_reg**2))) * np.sqrt(
@@ -3453,12 +3405,18 @@ class pol_map(object):
I_cut = self.I[new_cut].sum()
Q_cut = self.Q[new_cut].sum()
U_cut = self.U[new_cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[new_cut] ** 2))
Q_cut_err = np.sqrt(np.sum(s_Q[new_cut] ** 2))
U_cut_err = np.sqrt(np.sum(s_U[new_cut] ** 2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[new_cut] ** 2))
IU_cut_err = np.sqrt(np.sum(s_IU[new_cut] ** 2))
QU_cut_err = np.sqrt(np.sum(s_QU[new_cut] ** 2))
I_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 0][new_cut]))
Q_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 1][new_cut]))
U_cut_err = np.sqrt(np.sum(self.IQU_cov[2, 2][new_cut]))
IQ_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 1][new_cut] ** 2))
IU_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 2][new_cut] ** 2))
QU_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 2][new_cut] ** 2))
I_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][new_cut]))
Q_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][new_cut]))
U_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][new_cut]))
IQ_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][new_cut] ** 2))
IU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][new_cut] ** 2))
QU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][new_cut] ** 2))
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
@@ -3471,6 +3429,16 @@ class pol_map(object):
)
/ I_cut
)
P_cut_stat_err = (
P_cut
/ I_cut
* np.sqrt(
I_cut_stat_err
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
)
)
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
@@ -3491,7 +3459,7 @@ class pol_map(object):
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
)
+ "\n"
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ "\n"
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
+ str_conf
@@ -3503,7 +3471,7 @@ class pol_map(object):
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
# )
# + "\n"
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + "\n"
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
# )
@@ -3527,7 +3495,7 @@ class pol_map(object):
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
)
+ "\n"
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ "\n"
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
+ str_conf
@@ -3539,7 +3507,7 @@ class pol_map(object):
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
# )
# + "\n"
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + "\n"
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
# )

View File

@@ -52,6 +52,7 @@ from scipy.ndimage import rotate as sc_rotate
from scipy.ndimage import shift as sc_shift
from scipy.signal import fftconvolve
from .background import bkg_fit, bkg_hist, bkg_mini
from .convex_hull import image_hull
from .cross_correlation import phase_cross_correlation
from .deconvolve import deconvolve_im, gaussian2d, gaussian_psf, zeropad
@@ -223,7 +224,9 @@ def bin_ndarray(ndarray, new_shape, operation="sum"):
return ndarray
def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, null_val=None, inside=False, display=False, savename=None, plots_folder=""):
def crop_array(
data_array, headers, error_array=None, data_mask=None, step=5, null_val=None, crop=True, inside=False, display=False, savename=None, plots_folder=""
):
"""
Homogeneously crop an array: all contained images will have the same shape.
'inside' parameter will decide how much should be cropped.
@@ -255,6 +258,10 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
If None, will be put to 75% of the mean value of the associated error
array.
Defaults to None.
crop : boolean, optional
If True, data_array will be cropped down to contain only relevant data.
If False, this information will be kept in the crop_mask output.
Defaults to True.
inside : boolean, optional
If True, the cropped image will be the maximum rectangle included
inside the image. If False, the cropped image will be the minimum
@@ -294,6 +301,9 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
v_array[1] = np.max(vertex[:, 1]).astype(int)
v_array[2] = np.min(vertex[:, 2]).astype(int)
v_array[3] = np.max(vertex[:, 3]).astype(int)
if data_mask is None:
data_mask = np.zeros(data_array[0].shape).astype(bool)
data_mask[v_array[0] : v_array[1], v_array[2] : v_array[3]] = True
new_shape = np.array([v_array[1] - v_array[0], v_array[3] - v_array[2]])
rectangle = [v_array[2], v_array[0], new_shape[1], new_shape[0], 0.0, "b"]
@@ -307,8 +317,6 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
# Update CRPIX value in the associated header
curr_wcs = WCS(crop_headers[i]).celestial.deepcopy()
curr_wcs.wcs.crpix[:2] = curr_wcs.wcs.crpix[:2] - np.array([v_array[2], v_array[0]])
curr_wcs.array_shape = crop_array[i].shape
curr_wcs.wcs.set()
crop_headers[i].update(curr_wcs.to_header())
crop_headers[i]["naxis1"], crop_headers[i]["naxis2"] = crop_array[i].shape
@@ -353,11 +361,11 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
)
plt.show()
if data_mask is not None:
if crop:
crop_mask = data_mask[v_array[0] : v_array[1], v_array[2] : v_array[3]]
return crop_array, crop_error_array, crop_mask, crop_headers
else:
return crop_array, crop_error_array, crop_headers
return data_array, error_array, data_mask, headers
def deconvolve_array(data_array, headers, psf="gaussian", FWHM=1.0, scale="px", shape=None, iterations=20, algo="richardson"):
@@ -524,22 +532,20 @@ def get_error(
# estimated to less than 3%
err_flat = data * 0.03
from .background import bkg_fit, bkg_hist, bkg_mini
if sub_type is None:
n_data_array, c_error_bkg, headers, background = bkg_hist(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
sub_type, subtract_error = "histogram ", str(int(subtract_error > 0.0))
elif isinstance(sub_type, str):
if sub_type.lower() in ["fit"]:
if sub_type.lower() in ["auto"]:
n_data_array, c_error_bkg, headers, background = bkg_fit(
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
else:
n_data_array, c_error_bkg, headers, background = bkg_hist(
data, error, mask, headers, n_bins=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
)
sub_type, subtract_error = "histogram ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
elif isinstance(sub_type, tuple):
@@ -637,8 +643,7 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
pxsize, scale = "", "full"
else:
raise ValueError("'{0:s}' invalid scale for binning.".format(scale))
new_shape_float = min(image.shape / Dxy_arr, key=lambda x: x[0] + x[1])
new_shape = np.ceil(new_shape_float).astype(int)
new_shape = np.ceil(min(image.shape / Dxy_arr, key=lambda x: x[0] + x[1])).astype(int)
for i, (image, error, header) in enumerate(list(zip(data_array, error_array, headers))):
# Get current pixel size
@@ -667,10 +672,8 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
# Update header
nw = w.deepcopy()
nw.wcs.cdelt *= Dxy
# nw.wcs.crpix += np.abs(new_shape_float - new_shape) * np.array(new_shape) / Dxy
nw.wcs.crpix /= Dxy
nw.array_shape = new_shape
nw.wcs.set()
new_header["NAXIS1"], new_header["NAXIS2"] = nw.array_shape
new_header["PXAREA"] *= Dxy[0] * Dxy[1]
for key, val in nw.to_header().items():
@@ -850,10 +853,7 @@ def align_data(
new_crpix = np.array([wcs.wcs.crpix for wcs in headers_wcs]) + shifts[:, ::-1] + res_shift[::-1]
for i in range(len(headers_wcs)):
headers_wcs[i].wcs.crpix = new_crpix[0]
headers_wcs[i].array_shape = (res_shape, res_shape)
headers_wcs[i].wcs.set()
headers[i].update(headers_wcs[i].to_header())
headers[i]["NAXIS1"], headers[i]["NAXIS2"] = res_shape, res_shape
data_mask = rescaled_mask.all(axis=0)
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask, null_val=0.01 * background)
@@ -1252,6 +1252,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
# Orientation and error for each polarizer
# fmax = np.finfo(np.float64).max
pol_flux = np.array([corr[0] * pol0, corr[1] * pol60, corr[2] * pol120])
pol_flux_corr = np.array([pf * 2.0 / t for (pf, t) in zip(pol_flux, transmit)])
coeff_stokes = np.zeros((3, 3))
# Coefficients linking each polarizer flux to each Stokes parameter
@@ -1267,6 +1268,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
# Normalization parameter for Stokes parameters computation
N = (coeff_stokes[0, :] * transmit / 2.0).sum()
coeff_stokes = coeff_stokes / N
coeff_stokes_corr = np.array([cs * t / 2.0 for (cs, t) in zip(coeff_stokes.T, transmit)]).T
I_stokes = np.zeros(pol_array[0].shape)
Q_stokes = np.zeros(pol_array[0].shape)
U_stokes = np.zeros(pol_array[0].shape)
@@ -1308,121 +1310,81 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
# Statistical error: Poisson noise is assumed
sigma_flux = np.array([np.sqrt(flux / head["exptime"]) for flux, head in zip(pol_flux, pol_headers)])
s_I2_stat = np.sum([coeff_stokes[0, i] ** 2 * sigma_flux[i] ** 2 for i in range(len(sigma_flux))], axis=0)
s_Q2_stat = np.sum([coeff_stokes[1, i] ** 2 * sigma_flux[i] ** 2 for i in range(len(sigma_flux))], axis=0)
s_U2_stat = np.sum([coeff_stokes[2, i] ** 2 * sigma_flux[i] ** 2 for i in range(len(sigma_flux))], axis=0)
Stokes_stat_cov = np.zeros(Stokes_cov.shape)
for i in range(Stokes_cov.shape[0]):
Stokes_stat_cov[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
for j in [k for k in range(3) if k > i]:
Stokes_stat_cov[i, j] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
Stokes_stat_cov[j, i] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
pol_flux_corr = np.array([pf * 2.0 / t for (pf, t) in zip(pol_flux, transmit)])
coeff_stokes_corr = np.array([cs * t / 2.0 for (cs, t) in zip(coeff_stokes.T, transmit)]).T
# Compute the derivative of each Stokes parameter with respect to the polarizer orientation
dI_dtheta1 = (
2.0
* pol_eff[0]
/ N
* (
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) * (pol_flux_corr[1] - I_stokes)
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) * (pol_flux_corr[2] - I_stokes)
+ coeff_stokes_corr[0, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
)
)
dI_dtheta2 = (
2.0
* pol_eff[1]
/ N
* (
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) * (pol_flux_corr[2] - I_stokes)
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) * (pol_flux_corr[0] - I_stokes)
+ coeff_stokes_corr[0, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
)
)
dI_dtheta3 = (
2.0
* pol_eff[2]
/ N
* (
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) * (pol_flux_corr[0] - I_stokes)
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) * (pol_flux_corr[1] - I_stokes)
+ coeff_stokes_corr[0, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
)
)
dI_dtheta = np.array([dI_dtheta1, dI_dtheta2, dI_dtheta3])
dIQU_dtheta = np.zeros(Stokes_cov.shape)
dQ_dtheta1 = (
2.0
* pol_eff[0]
/ N
* (
np.cos(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
- (pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) - pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])) * Q_stokes
+ coeff_stokes_corr[1, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
# Derivative of I_stokes wrt theta_1, 2, 3
for j in range(3):
dIQU_dtheta[0, j] = (
2.0
* pol_eff[j]
/ N
* (
pol_eff[(j + 2) % 3] * np.cos(-2.0 * theta[(j + 2) % 3] + 2.0 * theta[j]) * (pol_flux_corr[(j + 1) % 3] - I_stokes)
- pol_eff[(j + 1) % 3] * np.cos(-2.0 * theta[j] + 2.0 * theta[(j + 1) % 3]) * (pol_flux_corr[(j + 2) % 3] - I_stokes)
+ coeff_stokes_corr[0, j] * (np.sin(2.0 * theta[j]) * Q_stokes - np.cos(2 * theta[j]) * U_stokes)
)
)
)
dQ_dtheta2 = (
2.0
* pol_eff[1]
/ N
* (
np.cos(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
- (pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) - pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])) * Q_stokes
+ coeff_stokes_corr[1, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
)
)
dQ_dtheta3 = (
2.0
* pol_eff[2]
/ N
* (
np.cos(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
- (pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) - pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])) * Q_stokes
+ coeff_stokes_corr[1, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
)
)
dQ_dtheta = np.array([dQ_dtheta1, dQ_dtheta2, dQ_dtheta3])
dU_dtheta1 = (
2.0
* pol_eff[0]
/ N
* (
np.sin(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
- (pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) - pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])) * U_stokes
+ coeff_stokes_corr[2, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
# Derivative of Q_stokes wrt theta_1, 2, 3
for j in range(3):
dIQU_dtheta[1, j] = (
2.0
* pol_eff[j]
/ N
* (
np.cos(2.0 * theta[j]) * (pol_flux_corr[(j + 1) % 3] - pol_flux_corr[(j + 2) % 3])
- (
pol_eff[(j + 2) % 3] * np.cos(-2.0 * theta[(j + 2) % 3] + 2.0 * theta[j])
- pol_eff[(j + 1) % 3] * np.cos(-2.0 * theta[j] + 2.0 * theta[(j + 1) % 3])
)
* Q_stokes
+ coeff_stokes_corr[1, j] * (np.sin(2.0 * theta[j]) * Q_stokes - np.cos(2 * theta[j]) * U_stokes)
)
)
)
dU_dtheta2 = (
2.0
* pol_eff[1]
/ N
* (
np.sin(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
- (pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) - pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])) * U_stokes
+ coeff_stokes_corr[2, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
# Derivative of U_stokes wrt theta_1, 2, 3
for j in range(3):
dIQU_dtheta[2, j] = (
2.0
* pol_eff[j]
/ N
* (
np.sin(2.0 * theta[j]) * (pol_flux_corr[(j + 1) % 3] - pol_flux_corr[(j + 2) % 3])
- (
pol_eff[(j + 2) % 3] * np.cos(-2.0 * theta[(j + 2) % 3] + 2.0 * theta[j])
- pol_eff[(j + 1) % 3] * np.cos(-2.0 * theta[j] + 2.0 * theta[(j + 1) % 3])
)
* U_stokes
+ coeff_stokes_corr[2, j] * (np.sin(2.0 * theta[j]) * Q_stokes - np.cos(2 * theta[j]) * U_stokes)
)
)
)
dU_dtheta3 = (
2.0
* pol_eff[2]
/ N
* (
np.sin(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
- (pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) - pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])) * U_stokes
+ coeff_stokes_corr[2, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
)
)
dU_dtheta = np.array([dU_dtheta1, dU_dtheta2, dU_dtheta3])
# Compute the uncertainty associated with the polarizers' orientation (see Kishimoto 1999)
s_I2_axis = np.sum([dI_dtheta[i] ** 2 * globals()["sigma_theta"][i] ** 2 for i in range(len(globals()["sigma_theta"]))], axis=0)
s_Q2_axis = np.sum([dQ_dtheta[i] ** 2 * globals()["sigma_theta"][i] ** 2 for i in range(len(globals()["sigma_theta"]))], axis=0)
s_U2_axis = np.sum([dU_dtheta[i] ** 2 * globals()["sigma_theta"][i] ** 2 for i in range(len(globals()["sigma_theta"]))], axis=0)
# np.savetxt("output/sI_dir.txt", np.sqrt(s_I2_axis))
# np.savetxt("output/sQ_dir.txt", np.sqrt(s_Q2_axis))
# np.savetxt("output/sU_dir.txt", np.sqrt(s_U2_axis))
Stokes_axis_cov = np.zeros(Stokes_cov.shape)
for i in range(Stokes_cov.shape[0]):
Stokes_axis_cov[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
for j in [k for k in range(3) if k > i]:
Stokes_axis_cov[i, j] = np.sum(
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
)
Stokes_axis_cov[j, i] = np.sum(
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
)
# Add quadratically the uncertainty to the Stokes covariance matrix
Stokes_cov[0, 0] += s_I2_axis + s_I2_stat
Stokes_cov[1, 1] += s_Q2_axis + s_Q2_stat
Stokes_cov[2, 2] += s_U2_axis + s_U2_stat
for i in range(Stokes_cov.shape[0]):
Stokes_cov[i, i] += Stokes_axis_cov[i, i] + Stokes_stat_cov[i, i]
for j in [k for k in range(Stokes_cov.shape[0]) if k > i]:
Stokes_cov[i, j] = np.sqrt(Stokes_cov[i, j] ** 2 + Stokes_axis_cov[i, j] ** 2 + Stokes_stat_cov[i, j] ** 2)
Stokes_cov[j, i] = np.sqrt(Stokes_cov[j, i] ** 2 + Stokes_axis_cov[j, i] ** 2 + Stokes_stat_cov[j, i] ** 2)
# Save values to single header
header_stokes = pol_headers[0]
@@ -1456,8 +1418,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
for i in range(3):
Stokes_cov[i, i] = np.sum([exp**2 * cov for exp, cov in zip(all_exp, all_Stokes_cov[:, i, i])], axis=0) / all_exp.sum() ** 2
for j in [x for x in range(3) if x != i]:
Stokes_cov[i, j] = np.sqrt(np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, i, j])], axis=0) / all_exp.sum() ** 2)
Stokes_cov[j, i] = np.sqrt(np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, j, i])], axis=0) / all_exp.sum() ** 2)
Stokes_cov[i, j] = np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, i, j])], axis=0) / all_exp.sum() ** 2
Stokes_cov[j, i] = np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, j, i])], axis=0) / all_exp.sum() ** 2
# Save values to single header
header_stokes = all_header_stokes[0]
@@ -1472,6 +1434,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
Q_stokes[np.isnan(Q_stokes)] = 0.0
U_stokes[np.isnan(U_stokes)] = 0.0
Stokes_cov[np.isnan(Stokes_cov)] = fmax
Stokes_stat_cov[np.isnan(Stokes_cov)] = fmax
if integrate:
# Compute integrated values for P, PA before any rotation
@@ -1485,29 +1448,47 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
IQ_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
I_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 0][mask]))
Q_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 1][mask]))
U_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[2, 2][mask]))
IQ_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 1][mask] ** 2))
IU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 2][mask] ** 2))
QU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 2][mask] ** 2))
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
P_diluted_err = np.sqrt(
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
(Q_diluted**2 * Q_diluted_err**2 + U_diluted**2 * U_diluted_err**2 + 2.0 * Q_diluted * U_diluted * QU_diluted_err) / (Q_diluted**2 + U_diluted**2)
+ ((Q_diluted / I_diluted) ** 2 + (U_diluted / I_diluted) ** 2) * I_diluted_err**2
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
)
P_diluted_stat_err = (
P_diluted
/ I_diluted
* np.sqrt(
I_diluted_stat_err
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
+ 1.0
/ (I_diluted**2 * P_diluted**4)
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
)
)
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
)
header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
header_stokes["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes
return I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes):
"""
Compute the polarization degree (in %) and angle (in deg) and their
respective errors from given Stokes parameters.
@@ -1582,27 +1563,44 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
s_P[np.isnan(s_P)] = fmax
s_PA[np.isnan(s_PA)] = fmax
# Errors on P, PA supposing Poisson noise
s_P_P = np.ones(I_stokes.shape) * fmax
s_PA_P = np.ones(I_stokes.shape) * fmax
maskP = np.logical_and(mask, P > 0.0)
s_P_P[maskP] = (
P[maskP]
/ I_stokes[maskP]
* np.sqrt(
Stokes_stat_cov[0, 0][maskP]
- 2.0 / (I_stokes[maskP] * P[maskP] ** 2) * (Q_stokes[maskP] * Stokes_stat_cov[0, 1][maskP] + U_stokes[maskP] * Stokes_stat_cov[0, 2][maskP])
+ 1.0
/ (I_stokes[maskP] ** 2 * P[maskP] ** 4)
* (
Q_stokes[maskP] ** 2 * Stokes_stat_cov[1, 1][maskP]
+ U_stokes[maskP] ** 2 * Stokes_stat_cov[2, 2][maskP]
+ 2.0 * Q_stokes[maskP] * U_stokes[maskP] * Stokes_stat_cov[1, 2][maskP]
)
)
)
s_PA_P[maskP] = (
90.0
/ (np.pi * I_stokes[maskP] ** 2 * P[maskP] ** 2)
* (
Q_stokes[maskP] ** 2 * Stokes_stat_cov[2, 2][maskP]
+ U_stokes[maskP] * Stokes_stat_cov[1, 1][maskP]
- 2.0 * Q_stokes[maskP] * U_stokes[maskP] * Stokes_stat_cov[1, 2][maskP]
)
)
# Catch expected "OverflowWarning" as wrong pixel have an overflowing error
with warnings.catch_warnings(record=True) as _:
mask2 = P**2 >= s_P**2
mask2 = P**2 >= s_P_P**2
debiased_P = np.zeros(I_stokes.shape)
debiased_P[mask2] = np.sqrt(P[mask2] ** 2 - s_P[mask2] ** 2)
debiased_P[mask2] = np.sqrt(P[mask2] ** 2 - s_P_P[mask2] ** 2)
if (debiased_P > 1.0).any():
print("WARNING : found {0:d} pixels for which debiased_P > 100%".format(debiased_P[debiased_P > 1.0].size))
# Compute the total exposure time so that
# I_stokes*exp_tot = N_tot the total number of events
exp_tot = header_stokes["exptime"]
# print("Total exposure time : {} sec".format(exp_tot))
N_obs = I_stokes * exp_tot
# Errors on P, PA supposing Poisson noise
s_P_P = np.ones(I_stokes.shape) * fmax
s_P_P[mask] = np.sqrt(2.0) / np.sqrt(N_obs[mask]) * 100.0
s_PA_P = np.ones(I_stokes.shape) * fmax
s_PA_P[mask2] = s_P_P[mask2] / (2.0 * P[mask2]) * 180.0 / np.pi
# Nan handling :
P[np.isnan(P)] = 0.0
s_P[np.isnan(s_P)] = fmax
@@ -1614,7 +1612,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None):
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes, SNRi_cut=None):
"""
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
matrix to rotate Q, U of a given angle in degrees and update header
@@ -1631,7 +1629,11 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
Image (2D floats) containing the Stokes parameters accounting for
+45/-45deg linear polarization intensity
Stokes_cov : numpy.ndarray
Covariance matrix of the Stokes parameters I, Q, U.
Covariance matrix containing all uncertainties of the Stokes
parameters I, Q, U.
Stokes_stat_cov : numpy.ndarray
Covariance matrix containing statistical uncertainty of the Stokes
parameters I, Q, U.
data_mask : numpy.ndarray
2D boolean array delimiting the data to work on.
header_stokes : astropy.fits.header.Header
@@ -1653,6 +1655,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
accounting for +45/-45deg linear polarization intensity.
new_Stokes_cov : numpy.ndarray
Updated covariance matrix of the Stokes parameters I, Q, U.
new_Stokes_stat_cov : numpy.ndarray
Updated statistical covariance matrix of the Stokes parameters I, Q, U.
new_header_stokes : astropy.fits.header.Header
Updated Header file associated with the Stokes fluxes accounting
for the new orientation angle.
@@ -1684,11 +1688,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
Q_stokes = zeropad(Q_stokes, shape)
U_stokes = zeropad(U_stokes, shape)
data_mask = zeropad(data_mask, shape)
Stokes_cov = zeropad(Stokes_cov, [*Stokes_cov.shape[:-2], *shape])
new_I_stokes = np.zeros(shape)
new_Q_stokes = np.zeros(shape)
new_U_stokes = np.zeros(shape)
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape))
# Rotate original images using scipy.ndimage.rotate
new_I_stokes = sc_rotate(I_stokes, ang, order=1, reshape=False, cval=0.0)
@@ -1697,6 +1699,10 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
new_data_mask = sc_rotate(data_mask.astype(float) * 10.0, ang, order=1, reshape=False, cval=0.0)
new_data_mask[new_data_mask < 1.0] = 0.0
new_data_mask = new_data_mask.astype(bool)
# Rotate covariance matrix
Stokes_cov = zeropad(Stokes_cov, [*Stokes_cov.shape[:-2], *shape])
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape))
for i in range(3):
for j in range(3):
new_Stokes_cov[i, j] = sc_rotate(Stokes_cov[i, j], ang, order=1, reshape=False, cval=0.0)
@@ -1707,6 +1713,17 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j] = np.dot(mrot, np.array([new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j]])).T
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
# Rotate statistical covariance matrix
Stokes_stat_cov = zeropad(Stokes_stat_cov, [*Stokes_stat_cov.shape[:-2], *shape])
new_Stokes_stat_cov = np.zeros((*Stokes_stat_cov.shape[:-2], *shape))
for i in range(3):
for j in range(3):
new_Stokes_stat_cov[i, j] = sc_rotate(Stokes_stat_cov[i, j], ang, order=1, reshape=False, cval=0.0)
new_Stokes_stat_cov[i, i] = np.abs(new_Stokes_stat_cov[i, i])
for i in range(shape[0]):
for j in range(shape[1]):
new_Stokes_stat_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_stat_cov[:, :, i, j], mrot.T))
# Update headers to new angle
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
@@ -1715,11 +1732,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
new_wcs.wcs.crpix = np.dot(mrot, new_wcs.wcs.crpix - old_center[::-1]) + new_center[::-1]
new_wcs.array_shape = shape
new_wcs.wcs.set()
for key, val in new_wcs.to_header().items():
new_header_stokes.set(key, val)
new_header_stokes["NAXIS1"], new_header_stokes["NAXIS2"] = new_wcs.array_shape
new_header_stokes["ORIENTAT"] += ang
# Nan handling :
@@ -1737,12 +1752,18 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
I_diluted = new_I_stokes[mask].sum()
Q_diluted = new_Q_stokes[mask].sum()
U_diluted = new_U_stokes[mask].sum()
I_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 0][mask]))
Q_diluted_err = np.sqrt(np.sum(new_Stokes_cov[1, 1][mask]))
U_diluted_err = np.sqrt(np.sum(new_Stokes_cov[2, 2][mask]))
IQ_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(new_Stokes_cov[1, 2][mask] ** 2))
I_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 0][mask]))
Q_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 1][mask]))
U_diluted_err = np.sqrt(np.sum(Stokes_cov[2, 2][mask]))
IQ_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
I_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 0][mask]))
Q_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 1][mask]))
U_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[2, 2][mask]))
IQ_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 1][mask] ** 2))
IU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 2][mask] ** 2))
QU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 2][mask] ** 2))
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
@@ -1751,18 +1772,30 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
)
P_diluted_stat_err = (
P_diluted
/ I_diluted
* np.sqrt(
I_diluted_stat_err
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
+ 1.0
/ (I_diluted**2 * P_diluted**4)
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
)
)
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
)
new_header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
new_header_stokes["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
new_header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_Stokes_stat_cov, new_data_mask, new_header_stokes
def rotate_data(data_array, error_array, data_mask, headers):
@@ -1820,11 +1853,9 @@ def rotate_data(data_array, error_array, data_mask, headers):
new_wcs = WCS(header).celestial.deepcopy()
new_wcs.wcs.pc[:2, :2] = np.dot(mrot, new_wcs.wcs.pc[:2, :2])
new_wcs.wcs.crpix[:2] = np.dot(mrot, new_wcs.wcs.crpix[:2] - old_center[::-1]) + new_center[::-1]
new_wcs.array_shape = shape
new_wcs.wcs.set()
for key, val in new_wcs.to_header().items():
new_header[key] = val
new_header["NAXIS1"], new_header["NAXIS2"] = new_wcs.array_shape
new_header["ORIENTAT"] = np.arccos(new_wcs.celestial.wcs.pc[0, 0]) * 180.0 / np.pi
new_header["ROTATE"] = ang
new_headers.append(new_header)

View File

@@ -43,7 +43,9 @@ def main(infile, P_cut=0.99, target=None, display="pf", output_dir=None):
if target is None:
target = Stokes[0].header["TARGNAME"]
fig = figure(figsize=(8, 8.5), layout="constrained")
ratiox = max(int(stkI.shape[1] / (stkI.shape[0])), 1)
ratioy = max(int((stkI.shape[0]) / stkI.shape[1]), 1)
fig = figure(figsize=(8 * ratiox, 8 * ratioy), layout="constrained")
fig, ax = polarization_map(Stokes, P_cut=P_cut, step_vec=1, scale_vec=5, display=display, fig=fig, width=0.33, linewidth=0.5)
ax.plot(*Stokescenter, marker="+", color="k", lw=3)