Add modified raw pipelin from Enrique with first Cygnus A observation
This commit is contained in:
BIN
plots/3C405_x136060/3C405_FOC_Enrique.png
Normal file
BIN
plots/3C405_x136060/3C405_FOC_Enrique.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 111 KiB |
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_Stokes.png
Normal file
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_Stokes.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 626 KiB |
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_alignment.png
Normal file
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_alignment.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 460 KiB |
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_combinePol.png
Normal file
BIN
plots/3C405_x136060/3C405_FOC_Enrique_test_combinePol.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 160 KiB |
@@ -84,25 +84,19 @@ def main():
|
||||
# Crop data to remove outside blank margins.
|
||||
data_array, error_array = proj_red.crop_array(data_array, step=5, null_val=0., inside=True)
|
||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||
headers2 = copy.deepcopy(headers)
|
||||
if deconvolve:
|
||||
data_array2 = proj_red.deconvolve_array(data_array, headers2, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations)
|
||||
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations)
|
||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||
data_array, error_array = proj_red.get_error(data_array, sub_shape=error_sub_shape, display=display_error, headers=headers, savename=figname+"_errors", plots_folder=plots_folder)
|
||||
data_array2, error_array2 = proj_red.get_error(data_array2, sub_shape=error_sub_shape, display=display_error, headers=headers2, savename=figname+"_errors", plots_folder=plots_folder)
|
||||
# Rebin data to desired pixel size.
|
||||
if rebin:
|
||||
data_array, error_array, headers, Dxy = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation)
|
||||
data_array2, error_array2, headers2, Dxy = proj_red.rebin_array(data_array2, error_array2, headers2, pxsize=pxsize, scale=px_scale, operation=rebin_operation)
|
||||
#Align and rescale images with oversampling.
|
||||
data_array, error_array = proj_red.align_data(data_array, error_array, upsample_factor=np.min(Dxy).astype(int), ref_center=align_center, return_shifts=False)
|
||||
data_array2, error_array2 = proj_red.align_data(data_array2, error_array2, upsample_factor=np.min(Dxy).astype(int), ref_center=align_center, return_shifts=False)
|
||||
|
||||
#Plot array for checking output
|
||||
if display_data:
|
||||
proj_plots.plot_obs(data_array, headers, vmin=data_array.min(), vmax=data_array.max(), savename=figname+"_center_"+align_center, plots_folder=plots_folder)
|
||||
proj_plots.plot_obs(data_array2, headers, vmin=data_array.min(), vmax=data_array.max(), savename=figname+"_deconv_center_"+align_center, plots_folder=plots_folder)
|
||||
proj_plots.plot_obs(data_array/data_array2, headers, vmin=0., vmax=10., savename=figname+"_ratio_deconv_center_"+align_center, plots_folder=plots_folder)
|
||||
|
||||
## Step 2:
|
||||
# Compute Stokes I, Q, U with smoothed polarized images
|
||||
|
||||
281
src/FOC_reduction_Enrique.py
Executable file
281
src/FOC_reduction_Enrique.py
Executable file
@@ -0,0 +1,281 @@
|
||||
#!/usr/bin/python
|
||||
#-*- coding:utf-8 -*-
|
||||
|
||||
from pylab import *
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from astropy.io import fits
|
||||
from astropy.wcs import WCS
|
||||
from aplpy import FITSFigure
|
||||
import scipy.ndimage
|
||||
import os as os
|
||||
|
||||
import lib.fits as proj_fits #Functions to handle fits files
|
||||
import lib.reduction as proj_red #Functions used in reduction pipeline
|
||||
import lib.plots as proj_plots #Functions for plotting data
|
||||
|
||||
plt.close('all')
|
||||
|
||||
def bin_ndarray(ndarray, new_shape, operation='sum'):
|
||||
"""
|
||||
Bins an ndarray in all axes based on the target shape, by summing or
|
||||
averaging.
|
||||
|
||||
Number of output dimensions must match number of input dimensions.
|
||||
|
||||
Example
|
||||
-------
|
||||
>>> m = np.arange(0,100,1).reshape((10,10))
|
||||
>>> n = bin_ndarray(m, new_shape=(5,5), operation='sum')
|
||||
>>> print(n)
|
||||
|
||||
[[ 22 30 38 46 54]
|
||||
[102 110 118 126 134]
|
||||
[182 190 198 206 214]
|
||||
[262 270 278 286 294]
|
||||
[342 350 358 366 374]]
|
||||
|
||||
"""
|
||||
if not operation.lower() in ['sum', 'mean', 'average', 'avg']:
|
||||
raise ValueError("Operation not supported.")
|
||||
if ndarray.ndim != len(new_shape):
|
||||
raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape,
|
||||
new_shape))
|
||||
compression_pairs = [(d, c//d) for d,c in zip(new_shape,
|
||||
ndarray.shape)]
|
||||
flattened = [l for p in compression_pairs for l in p]
|
||||
ndarray = ndarray.reshape(flattened)
|
||||
for i in range(len(new_shape)):
|
||||
if operation.lower() == "sum":
|
||||
ndarray = ndarray.sum(-1*(i+1))
|
||||
elif operation.lower() in ["mean", "average", "avg"]:
|
||||
ndarray = ndarray.mean(-1*(i+1))
|
||||
return ndarray
|
||||
|
||||
def plots(ax,data,vmax,vmin):
|
||||
ax.imshow(data,vmax=vmax,vmin=vmin,origin='lower')
|
||||
|
||||
|
||||
|
||||
### User input
|
||||
|
||||
#infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits','x274020dt.c0f.fits',
|
||||
# 'x274020et.c0f.fits','x274020ft.c0f.fits','x274020gt.c0f.fits','x274020ht.c0f.fits',
|
||||
# 'x274020it.c0f.fits']
|
||||
|
||||
globals()['data_folder'] = "../data/3C405_x136060/"
|
||||
infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
||||
#infiles = ['x1360601t_c1f.fits','x1360602t_c1f.fits','x1360603t_c1f.fits']
|
||||
globals()['plots_folder'] = "../plots/3C405_x136060/"
|
||||
|
||||
#Centroids
|
||||
#The centroids should be estimated by cross-correlating the images.
|
||||
#Here I used the position of the central source for each file as the reference pixel position.
|
||||
#ycen_0 = [304,306,303,296,295,295,294,305,304]
|
||||
#xcen_0 = [273,274,273,276,274,274,274,272,271]
|
||||
|
||||
data_array = []
|
||||
for name in infiles:
|
||||
with fits.open(data_folder+name) as f:
|
||||
data_array.append(f[0].data)
|
||||
data_array = np.array(data_array)
|
||||
shape = data_array.shape
|
||||
data_array, error_array = proj_red.crop_array(data_array, step=5, null_val=0., inside=True)
|
||||
data_array, error_array, shifts, errors = proj_red.align_data(data_array, error_array)
|
||||
center = np.array([(np.array(shape[1:])/2).astype(int),]*len(infiles))-shifts
|
||||
xcen_0 = center[:,0].astype(int)
|
||||
ycen_0 = center[:,1].astype(int)
|
||||
|
||||
#size, in pixels, of the FOV centered in x_cen_0,y_cen_0
|
||||
Dx = 500
|
||||
Dy = 500
|
||||
|
||||
#set the new image size (Dxy x Dxy pixels binning)
|
||||
Dxy = 10
|
||||
new_shape = (Dx//Dxy,Dy//Dxy)
|
||||
|
||||
#figures
|
||||
#test alignment
|
||||
vmin = 0
|
||||
vmax = 6
|
||||
font_size=40.0
|
||||
label_size=20.
|
||||
lw = 3.
|
||||
|
||||
#pol. map
|
||||
SNRp_cut = 3 #P measumentes with SNR>3
|
||||
SNRi_cut = 5 #I measuremntes with SNR>30, which implies an uncerrtainty in P of 4.7%.
|
||||
scalevec = 0.05 #length of vectors in pol. map
|
||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||
vec_legend = 10 #% pol for legend
|
||||
#figname = 'NGC1068_FOC.png'
|
||||
figname = '3C405_FOC_Enrique'
|
||||
|
||||
|
||||
### SCRIPT ###
|
||||
### Step 1. Check input images before data reduction
|
||||
#this step is very simplistic.
|
||||
#Here I used the position of the central source for each file as the
|
||||
#reference pixel position.
|
||||
#The centroids should be estimated by cross-correlating the images,
|
||||
#and compare with the simplistic approach of using the peak pixel of the
|
||||
#object as the reference pixel.
|
||||
|
||||
|
||||
fig,axs = plt.subplots(3,3,figsize=(30,30),dpi=200,sharex=True,sharey=True)
|
||||
|
||||
for jj, enum in enumerate(list(zip(axs.flatten(),data_array))):
|
||||
a = enum[0]
|
||||
img = fits.open(data_folder+infiles[jj])
|
||||
ima = img[0].data
|
||||
ima = ima[ycen_0[jj]-Dy:ycen_0[jj]+Dy,xcen_0[jj]-Dx:xcen_0[jj]+Dx]
|
||||
ima = bin_ndarray(ima,new_shape=new_shape,operation='sum') #binning
|
||||
exptime = img[0].header['EXPTIME']
|
||||
fil = img[0].header['FILTNAM1']
|
||||
ima = ima/exptime
|
||||
globals()['ima_%s' % jj] = ima
|
||||
#plots
|
||||
plots(a,ima,vmax=vmax,vmin=vmin)
|
||||
#position of centroid
|
||||
a.plot([ima.shape[1]/2,ima.shape[1]/2],[0,ima.shape[0]-1],lw=1,color='black')
|
||||
a.plot([0,ima.shape[1]-1],[ima.shape[1]/2,ima.shape[1]/2],lw=1,color='black')
|
||||
a.text(2,2,infiles[jj][0:8],color='white',fontsize=10)
|
||||
a.text(2,5,fil,color='white',fontsize=30)
|
||||
a.text(ima.shape[1]-20,1,exptime,color='white',fontsize=20)
|
||||
fig.subplots_adjust(hspace=0,wspace=0)
|
||||
fig.savefig(plots_folder+figname+'_test_alignment.png',dpi=300)
|
||||
#os.system('open test_alignment.png')
|
||||
|
||||
|
||||
|
||||
### Step 2. average of all images for a single polarizer to have them in the same units e/s.
|
||||
pol0 = ima_0#(ima_0 + ima_1 + ima_2)/3.
|
||||
pol60 = ima_1#(ima_3 + ima_4 + ima_5 + ima_6)/4.
|
||||
pol120 = ima_2#(ima_7 + ima_8)/2.
|
||||
|
||||
fig1,(ax1,ax2,ax3) = plt.subplots(1,3,figsize=(26,8),dpi=200)
|
||||
CF = ax1.imshow(pol0,vmin=vmin,vmax=vmax,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax1)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax1.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax1.text(2,2,'POL0',color='white',fontsize=10)
|
||||
|
||||
CF = ax2.imshow(pol60,vmin=vmin,vmax=vmax,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax2)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax2.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax2.text(2,2,'POL60',color='white',fontsize=10)
|
||||
|
||||
CF = ax3.imshow(pol120,vmin=vmin,vmax=vmax,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax3)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax3.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax3.text(2,2,'POL120',color='white',fontsize=10)
|
||||
fig1.savefig(plots_folder+figname+'_test_combinePol.png',dpi=300)
|
||||
#os.system('open test_combinePol.png')
|
||||
|
||||
|
||||
### Step 3. Compute Stokes IQU, P, PA, PI
|
||||
#Stokes parameters
|
||||
I_stokes = (2./3.)*(pol0 + pol60 + pol120)
|
||||
Q_stokes = (2./3.)*(2*pol0 - pol60 - pol120)
|
||||
U_stokes = (2./np.sqrt(3.))*(pol60 - pol120)
|
||||
|
||||
#Remove nan
|
||||
I_stokes[np.isnan(I_stokes)]=0.
|
||||
Q_stokes[np.isnan(Q_stokes)]=0.
|
||||
U_stokes[np.isnan(U_stokes)]=0.
|
||||
|
||||
#Polarimetry
|
||||
PI = np.sqrt(Q_stokes*Q_stokes + U_stokes*U_stokes)
|
||||
P = PI/I_stokes*100
|
||||
PA = 0.5*arctan2(U_stokes,Q_stokes)*180./np.pi+90
|
||||
s_P = np.sqrt(2.)*(I_stokes)**(-0.5)
|
||||
s_PA = s_P/(P/100.)*180./np.pi
|
||||
|
||||
fig2,((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3,figsize=(40,20),dpi=200)
|
||||
CF = ax1.imshow(I_stokes,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax1)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax1.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax1.text(2,2,'I',color='white',fontsize=10)
|
||||
|
||||
CF = ax2.imshow(Q_stokes,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax2)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax2.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax2.text(2,2,'Q',color='white',fontsize=10)
|
||||
|
||||
CF = ax3.imshow(U_stokes,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax3)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax3.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax3.text(2,2,'U',color='white',fontsize=10)
|
||||
|
||||
v = np.linspace(0,40,50)
|
||||
CF = ax4.imshow(P,origin='lower',vmin=0,vmax=40)
|
||||
cbar = plt.colorbar(CF,ax=ax4)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax4.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax4.text(2,2,'P',color='white',fontsize=10)
|
||||
|
||||
CF = ax5.imshow(PA,origin='lower',vmin=0,vmax=180)
|
||||
cbar = plt.colorbar(CF,ax=ax5)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax5.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax5.text(2,2,'PA',color='white',fontsize=10)
|
||||
|
||||
CF = ax6.imshow(PI,origin='lower')
|
||||
cbar = plt.colorbar(CF,ax=ax6)
|
||||
cbar.ax.tick_params(labelsize=20)
|
||||
ax6.tick_params(axis='both', which='major', labelsize=20)
|
||||
ax6.text(2,2,'PI',color='white',fontsize=10)
|
||||
|
||||
fig2.savefig(plots_folder+figname+'_test_Stokes.png',dpi=300)
|
||||
#os.system('open test_Stokes.png')
|
||||
|
||||
### Step 4. Binning and smoothing
|
||||
#Images can be binned and smoothed to improve SNR. This step can also be done
|
||||
#using the PolX images.
|
||||
|
||||
|
||||
### Step 5. Roate images to have North up
|
||||
#Images needs to be reprojected to have North up.
|
||||
#this procedure implies to rotate the Stokes QU using a rotation matrix
|
||||
|
||||
|
||||
### STEP 6. image to FITS with updated WCS
|
||||
new_wcs = WCS(naxis=2)
|
||||
new_wcs.wcs.crpix = [I_stokes.shape[0]/2, I_stokes.shape[1]/2]
|
||||
new_wcs.wcs.crval = [img[0].header['CRVAL1'], img[0].header['CRVAL2']]
|
||||
new_wcs.wcs.cunit = ["deg", "deg"]
|
||||
new_wcs.wcs.ctype = ["RA---TAN", "DEC--TAN"]
|
||||
new_wcs.wcs.cdelt = [img[0].header['CD1_1']*Dxy, img[0].header['CD1_2']*Dxy]
|
||||
|
||||
#hdu_ori = WCS(img[0])
|
||||
stkI=fits.PrimaryHDU(data=I_stokes,header=new_wcs.to_header())
|
||||
pol=fits.PrimaryHDU(data=P,header=new_wcs.to_header())
|
||||
pang=fits.PrimaryHDU(data=PA,header=new_wcs.to_header())
|
||||
pol_err=fits.PrimaryHDU(data=s_P,header=new_wcs.to_header())
|
||||
pang_err=fits.PrimaryHDU(data=s_PA,header=new_wcs.to_header())
|
||||
|
||||
|
||||
### STEP 7. polarization map
|
||||
#quality cuts
|
||||
pxscale = stkI.header['CDELT1']
|
||||
|
||||
#apply quality cuts
|
||||
SNRp = pol.data/pol_err.data
|
||||
pol.data[SNRp < SNRp_cut] = np.nan
|
||||
|
||||
SNRi = stkI.data/np.std(stkI.data[0:10,0:10])
|
||||
pol.data[SNRi < SNRi_cut] = np.nan
|
||||
print(np.max(SNRi))
|
||||
fig = plt.figure(figsize=(11,10))
|
||||
gc = FITSFigure(stkI,figure=fig)
|
||||
gc.show_contour(np.log10(SNRi),levels=np.linspace(np.log10(SNRi_cut),np.max(np.log10(SNRi)),20),\
|
||||
filled=True,cmap='magma')
|
||||
gc.show_vectors(pol,pang,scale=scalevec,step=step_vec,color='white',linewidth=1.0)
|
||||
|
||||
fig.savefig(plots_folder+figname,dpi=300)
|
||||
#os.system('open '+figname)
|
||||
Reference in New Issue
Block a user