Add Stokes_cov_stat to fits and compute again P_debiased in plots

This commit is contained in:
2025-08-08 11:45:11 +02:00
parent e639695618
commit f4effac343
4 changed files with 223 additions and 142 deletions

View File

@@ -41,7 +41,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# Background estimation
error_sub_type = "scott" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 0.50
subtract_error = 0.80
display_bkg = False
# Data binning
@@ -203,24 +203,38 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
Stokes, Stokes_cov, header_stokes, s_IQU_stat = proj_red.compute_Stokes(
Stokes, Stokes_cov, header_stokes, Stokes_cov_stat = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
)
# Step 3:
# Rotate images to have North up
if rotate_North:
Stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat = proj_red.rotate_Stokes(
Stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=s_IQU_stat, SNRi_cut=None
Stokes, Stokes_cov, data_mask, header_stokes, Stokes_cov_stat = proj_red.rotate_Stokes(
Stokes, Stokes_cov, data_mask, header_stokes, Stokes_cov_stat=Stokes_cov_stat, SNRi_cut=None
)
# Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=s_IQU_stat)
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(Stokes, Stokes_cov, header_stokes, Stokes_cov_stat=Stokes_cov_stat)
# Step 4:
# Save image to FITS.
figname = "_".join([figname, figtype]) if figtype != "" else figname
Stokes_hdul = proj_fits.save_Stokes(
Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, figname, data_folder=data_folder, return_hdul=True
Stokes,
Stokes_cov,
Stokes_cov_stat,
P,
debiased_P,
s_P,
s_P_P,
PA,
s_PA,
s_PA_P,
header_stokes,
data_mask,
figname,
data_folder=data_folder,
return_hdul=True,
)
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))

View File

@@ -105,7 +105,9 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
return data_array, headers
def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, filename, data_folder="", return_hdul=False):
def save_Stokes(
Stokes, Stokes_cov, Stokes_cov_stat, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, filename, data_folder="", return_hdul=False
):
"""
Save computed polarimetry parameters to a single fits file,
updating header accordingly.
@@ -116,8 +118,9 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
Stokes parameters I, Q, U, V, Polarization degree and debieased,
its error propagated and assuming Poisson noise, Polarization angle,
its error propagated and assuming Poisson noise.
Stokes_cov : numpy.ndarray
Covariance matrix of the Stokes parameters I, Q, U.
Stokes_cov, Stokes_cov_stat : numpy.ndarray
Covariance matrix of the Stokes parameters I, Q, U, V and its statistical
uncertainties part.
headers : header list
Header of reference some keywords will be copied from (CRVAL, CDELT,
INSTRUME, PROPOSID, TARGNAME, ORIENTAT, EXPTOT).
@@ -135,14 +138,14 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
----------
Return:
hdul : astropy.io.fits.hdu.hdulist.HDUList
HDUList containing the Stokes cube in the PrimaryHDU, then
P, s_P, PA, s_PA in this order. Headers have been updated to relevant
informations (WCS, orientation, data_type).
HDUList containing the Stokes cube in the PrimaryHDU, then Stokes_cov,
Stokes_cov_stat, P, s_P, PA, s_PA in this order. Headers have been updated
to relevant informations (WCS, orientation, data_type).
Only returned if return_hdul is True.
"""
# Create new WCS object given the modified images
new_wcs = WCS(header_stokes).celestial.deepcopy()
header = remove_stokes_axis_from_header(header_stokes).copy()
header = remove_stokes_axis_from_header(header_stokes).copy() if header_stokes["NAXIS"] > 2 else header_stokes.copy()
if data_mask.shape != (1, 1):
vertex = clean_ROI(data_mask)
@@ -176,6 +179,7 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
if data_mask.shape != (1, 1):
Stokes = Stokes[:, vertex[2] : vertex[3], vertex[0] : vertex[1]]
Stokes_cov = Stokes_cov[:, :, vertex[2] : vertex[3], vertex[0] : vertex[1]]
Stokes_cov_stat = Stokes_cov_stat[:, :, vertex[2] : vertex[3], vertex[0] : vertex[1]]
P = P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
debiased_P = debiased_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
s_P = s_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
@@ -192,7 +196,7 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
# Add I_stokes as PrimaryHDU
header["datatype"] = ("STOKES", "type of data stored in the HDU")
Stokes[np.broadcast_to((1 - data_mask).astype(bool), Stokes.shape)] = 0.0
hdu_head = add_stokes_axis_to_header(header, 2)
hdu_head = add_stokes_axis_to_header(header, 0)
primary_hdu = fits.PrimaryHDU(data=Stokes, header=hdu_head)
primary_hdu.name = "STOKES"
hdul.append(primary_hdu)
@@ -200,6 +204,7 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
# Add Stokes_cov, P, s_P, PA, s_PA to the HDUList
for data, name in [
[Stokes_cov, "STOKES_COV"],
[Stokes_cov_stat, "STOKES_COV_STAT"],
[P, "Pol_deg"],
[debiased_P, "Pol_deg_debiased"],
[s_P, "Pol_deg_err"],
@@ -211,9 +216,9 @@ def save_Stokes(Stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
]:
hdu_head = header.copy()
hdu_head["datatype"] = name
if name == "STOKES_COV":
hdu_head = add_stokes_axis_to_header(hdu_head, 2)
hdu_head = add_stokes_axis_to_header(hdu_head, 3)
if name[:10] == "STOKES_COV":
hdu_head = add_stokes_axis_to_header(hdu_head, 0)
hdu_head = add_stokes_axis_to_header(hdu_head, 0)
data[np.broadcast_to((1 - data_mask).astype(bool), data.shape)] = 0.0
else:
data[(1 - data_mask).astype(bool)] = 0.0

View File

@@ -2113,7 +2113,7 @@ class crop_Stokes(crop_map):
for dataset in self.hdul_crop:
if dataset.header["datatype"] == "STOKES":
dataset.data = deepcopy(dataset.data[:, vertex[2] : vertex[3], vertex[0] : vertex[1]])
elif dataset.header["datatype"] == "STOKES_COV":
elif dataset.header["datatype"][:10] == "STOKES_COV":
dataset.data = deepcopy(dataset.data[:, :, vertex[2] : vertex[3], vertex[0] : vertex[1]])
else:
dataset.data = deepcopy(dataset.data[vertex[2] : vertex[3], vertex[0] : vertex[1]])
@@ -2142,6 +2142,12 @@ class crop_Stokes(crop_map):
IQ_diluted_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV"].data[0, 1][mask] ** 2))
IU_diluted_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV"].data[0, 2][mask] ** 2))
QU_diluted_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV"].data[1, 2][mask] ** 2))
I_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[0, 0][mask]))
Q_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[1, 1][mask]))
U_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[2, 2][mask]))
IQ_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[0, 1][mask] ** 2))
IU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[0, 2][mask] ** 2))
QU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["STOKES_COV_STAT"].data[1, 2][mask] ** 2))
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
@@ -2150,6 +2156,18 @@ class crop_Stokes(crop_map):
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
)
P_diluted_stat_err = (
P_diluted
/ I_diluted
* np.sqrt(
I_diluted_stat_err
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
+ 1.0
/ (I_diluted**2 * P_diluted**4)
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
)
)
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
@@ -2159,7 +2177,7 @@ class crop_Stokes(crop_map):
for dataset in self.hdul_crop:
if dataset.header["FILENAME"][-4:] != "crop":
dataset.header["FILENAME"] += "_crop"
dataset.header["P_int"] = (P_diluted, "Integrated polarization degree")
dataset.header["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
dataset.header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
dataset.header["PA_int"] = (PA_diluted, "Integrated polarization angle")
dataset.header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
@@ -2492,7 +2510,7 @@ class pol_map(object):
ax_vec_sc = self.fig.add_axes([0.260, 0.030, 0.090, 0.01])
ax_snr_reset = self.fig.add_axes([0.060, 0.020, 0.05, 0.02])
ax_snr_conf = self.fig.add_axes([0.115, 0.020, 0.05, 0.02])
SNRi_max = np.max(self.I[self.IQU_cov[0, 0] > 0.0] / np.sqrt(self.IQU_cov[0, 0][self.IQU_cov[0, 0] > 0.0]))
SNRi_max = np.max(self.I[self.Stokes_cov[0, 0] > 0.0] / np.sqrt(self.Stokes_cov[0, 0][self.Stokes_cov[0, 0] > 0.0]))
SNRp_max = np.max(self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0])
s_I_cut = Slider(ax_I_cut, r"$SNR^{I}_{cut}$", 1.0, int(SNRi_max * 0.95), valstep=0.5, valinit=self.SNRi_cut)
self.P_ERR_cut = Slider(
@@ -2988,9 +3006,13 @@ class pol_map(object):
return self.U_ERR / np.where(self.I > 0, self.I, np.nan)
@property
def IQU_cov(self):
def Stokes_cov(self):
return self.Stokes["STOKES_COV"].data
@property
def Stokes_cov_stat(self):
return self.Stokes["STOKES_COV_STAT"].data
@property
def P(self):
return self.Stokes["POL_DEG_DEBIASED"].data
@@ -3016,7 +3038,7 @@ class pol_map(object):
@property
def cut(self):
s_I = np.sqrt(self.IQU_cov[0, 0])
s_I = np.sqrt(self.Stokes_cov[0, 0])
SNRp_mask, SNRi_mask = (np.zeros(self.P.shape).astype(bool), np.zeros(self.I.shape).astype(bool))
SNRi_mask[s_I > 0.0] = self.I[s_I > 0.0] / s_I[s_I > 0.0] > self.SNRi
if self.SNRp >= 1.0:
@@ -3159,7 +3181,7 @@ class pol_map(object):
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
label = r"$\theta_{P}$ [°]"
elif self.display_selection.lower() in ["snri"]:
s_I = np.sqrt(self.IQU_cov[0, 0])
s_I = np.sqrt(self.Stokes_cov[0, 0])
SNRi = np.zeros(self.I.shape)
SNRi[s_I > 0.0] = self.I[s_I > 0.0] / s_I[s_I > 0.0]
self.data = SNRi
@@ -3354,68 +3376,77 @@ class pol_map(object):
)
fig.canvas.draw_idle()
def pol_int(self, fig=None, ax=None):
def pol_int(self, fig=None, ax=None, cut=False):
str_conf = ""
if self.region is None:
s_I = np.sqrt(self.IQU_cov[0, 0])
s_I = np.sqrt(self.Stokes_cov[0, 0])
I_reg = self.I.sum()
I_reg_err = np.sqrt(np.sum(s_I**2))
P_reg = self.Stokes[0].header["P_int"]
debiased_P_reg = self.Stokes[0].header["P_int"]
P_reg_err = self.Stokes[0].header["sP_int"]
PA_reg = self.Stokes[0].header["PA_int"]
PA_reg_err = self.Stokes[0].header["sPA_int"]
s_I = np.sqrt(self.IQU_cov[0, 0])
s_Q = np.sqrt(self.IQU_cov[1, 1])
s_U = np.sqrt(self.IQU_cov[2, 2])
s_IQ = self.IQU_cov[0, 1]
s_IU = self.IQU_cov[0, 2]
s_QU = self.IQU_cov[1, 2]
if cut:
I_cut = self.I[self.cut].sum()
Q_cut = self.Q[self.cut].sum()
U_cut = self.U[self.cut].sum()
I_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 0][self.cut]))
Q_cut_err = np.sqrt(np.sum(self.Stokes_cov[1, 1][self.cut]))
U_cut_err = np.sqrt(np.sum(self.Stokes_cov[2, 2][self.cut]))
IQ_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 1][self.cut] ** 2))
IU_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 2][self.cut] ** 2))
QU_cut_err = np.sqrt(np.sum(self.Stokes_cov[1, 2][self.cut] ** 2))
I_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 0][self.cut]))
Q_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 1][self.cut]))
U_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[2, 2][self.cut]))
IQ_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 1][self.cut] ** 2))
IU_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 2][self.cut] ** 2))
QU_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 2][self.cut] ** 2))
I_cut = self.I[self.cut].sum()
Q_cut = self.Q[self.cut].sum()
U_cut = self.U[self.cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[self.cut] ** 2))
Q_cut_err = np.sqrt(np.sum(s_Q[self.cut] ** 2))
U_cut_err = np.sqrt(np.sum(s_U[self.cut] ** 2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[self.cut] ** 2))
IU_cut_err = np.sqrt(np.sum(s_IU[self.cut] ** 2))
QU_cut_err = np.sqrt(np.sum(s_QU[self.cut] ** 2))
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
P_cut_err = (
np.sqrt(
(Q_cut**2 * Q_cut_err**2 + U_cut**2 * U_cut_err**2 + 2.0 * Q_cut * U_cut * QU_cut_err) / (Q_cut**2 + U_cut**2)
+ ((Q_cut / I_cut) ** 2 + (U_cut / I_cut) ** 2) * I_cut_err**2
- 2.0 * (Q_cut / I_cut) * IQ_cut_err
- 2.0 * (U_cut / I_cut) * IU_cut_err
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
P_cut_err = (
np.sqrt(
(Q_cut**2 * Q_cut_err**2 + U_cut**2 * U_cut_err**2 + 2.0 * Q_cut * U_cut * QU_cut_err) / (Q_cut**2 + U_cut**2)
+ ((Q_cut / I_cut) ** 2 + (U_cut / I_cut) ** 2) * I_cut_err**2
- 2.0 * (Q_cut / I_cut) * IQ_cut_err
- 2.0 * (U_cut / I_cut) * IU_cut_err
)
/ I_cut
)
/ I_cut
)
P_cut_stat_err = (
P_cut
/ I_cut
* np.sqrt(
I_cut_stat_err
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
)
)
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
U_cut**2 * Q_cut_err**2 + Q_cut**2 * U_cut_err**2 - 2.0 * Q_cut * U_cut * QU_cut_err
)
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
U_cut**2 * Q_cut_err**2 + Q_cut**2 * U_cut_err**2 - 2.0 * Q_cut * U_cut * QU_cut_err
)
else:
s_I = np.sqrt(self.IQU_cov[0, 0])
s_Q = np.sqrt(self.IQU_cov[1, 1])
s_U = np.sqrt(self.IQU_cov[2, 2])
s_IQ = self.IQU_cov[0, 1]
s_IU = self.IQU_cov[0, 2]
s_QU = self.IQU_cov[1, 2]
I_reg = self.I[self.region].sum()
Q_reg = self.Q[self.region].sum()
U_reg = self.U[self.region].sum()
I_reg_err = np.sqrt(np.sum(s_I[self.region] ** 2))
Q_reg_err = np.sqrt(np.sum(s_Q[self.region] ** 2))
U_reg_err = np.sqrt(np.sum(s_U[self.region] ** 2))
IQ_reg_err = np.sqrt(np.sum(s_IQ[self.region] ** 2))
IU_reg_err = np.sqrt(np.sum(s_IU[self.region] ** 2))
QU_reg_err = np.sqrt(np.sum(s_QU[self.region] ** 2))
I_reg_err = np.sqrt(np.sum(self.Stokes_cov[0, 0][self.region]))
Q_reg_err = np.sqrt(np.sum(self.Stokes_cov[1, 1][self.region]))
U_reg_err = np.sqrt(np.sum(self.Stokes_cov[2, 2][self.region]))
IQ_reg_err = np.sqrt(np.sum(self.Stokes_cov[0, 1][self.region] ** 2))
IU_reg_err = np.sqrt(np.sum(self.Stokes_cov[0, 2][self.region] ** 2))
QU_reg_err = np.sqrt(np.sum(self.Stokes_cov[1, 2][self.region] ** 2))
I_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 0][self.region]))
Q_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 1][self.region]))
U_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[2, 2][self.region]))
IQ_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 1][self.region] ** 2))
IU_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 2][self.region] ** 2))
QU_reg_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 2][self.region] ** 2))
conf = PCconf(QN=Q_reg / I_reg, QN_ERR=Q_reg_err / I_reg, UN=U_reg / I_reg, UN_ERR=U_reg_err / I_reg)
if 1.0 - conf > 1e-3:
@@ -3432,39 +3463,66 @@ class pol_map(object):
)
/ I_reg
)
P_reg_stat_err = (
P_reg
/ I_reg
* np.sqrt(
I_reg_stat_err
- 2.0 / (I_reg * P_reg**2) * (Q_reg * IQ_reg_stat_err + U_reg * IU_reg_stat_err)
+ 1.0 / (I_reg**2 * P_reg**4) * (Q_reg**2 * Q_reg_stat_err + U_reg**2 * U_reg_stat_err + 2.0 * Q_reg * U_reg * QU_reg_stat_err)
)
)
debiased_P_reg = np.sqrt(P_reg**2 - P_reg_stat_err**2) if P_reg**2 > P_reg_stat_err**2 else 0.0
PA_reg = princ_angle((90.0 / np.pi) * np.arctan2(U_reg, Q_reg))
PA_reg_err = (90.0 / (np.pi * (Q_reg**2 + U_reg**2))) * np.sqrt(
U_reg**2 * Q_reg_err**2 + Q_reg**2 * U_reg_err**2 - 2.0 * Q_reg * U_reg * QU_reg_err
)
new_cut = np.logical_and(self.region, self.cut)
I_cut = self.I[new_cut].sum()
Q_cut = self.Q[new_cut].sum()
U_cut = self.U[new_cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[new_cut] ** 2))
Q_cut_err = np.sqrt(np.sum(s_Q[new_cut] ** 2))
U_cut_err = np.sqrt(np.sum(s_U[new_cut] ** 2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[new_cut] ** 2))
IU_cut_err = np.sqrt(np.sum(s_IU[new_cut] ** 2))
QU_cut_err = np.sqrt(np.sum(s_QU[new_cut] ** 2))
if cut:
new_cut = np.logical_and(self.region, self.cut)
I_cut = self.I[new_cut].sum()
Q_cut = self.Q[new_cut].sum()
U_cut = self.U[new_cut].sum()
I_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 0][new_cut]))
Q_cut_err = np.sqrt(np.sum(self.Stokes_cov[1, 1][new_cut]))
U_cut_err = np.sqrt(np.sum(self.Stokes_cov[2, 2][new_cut]))
IQ_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 1][new_cut] ** 2))
IU_cut_err = np.sqrt(np.sum(self.Stokes_cov[0, 2][new_cut] ** 2))
QU_cut_err = np.sqrt(np.sum(self.Stokes_cov[1, 2][new_cut] ** 2))
I_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 0][new_cut]))
Q_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 1][new_cut]))
U_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[2, 2][new_cut]))
IQ_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 1][new_cut] ** 2))
IU_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[0, 2][new_cut] ** 2))
QU_cut_stat_err = np.sqrt(np.sum(self.Stokes_cov_stat[1, 2][new_cut] ** 2))
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
P_cut_err = (
np.sqrt(
(Q_cut**2 * Q_cut_err**2 + U_cut**2 * U_cut_err**2 + 2.0 * Q_cut * U_cut * QU_cut_err) / (Q_cut**2 + U_cut**2)
+ ((Q_cut / I_cut) ** 2 + (U_cut / I_cut) ** 2) * I_cut_err**2
- 2.0 * (Q_cut / I_cut) * IQ_cut_err
- 2.0 * (U_cut / I_cut) * IU_cut_err
with np.errstate(divide="ignore", invalid="ignore"):
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
P_cut_err = (
np.sqrt(
(Q_cut**2 * Q_cut_err**2 + U_cut**2 * U_cut_err**2 + 2.0 * Q_cut * U_cut * QU_cut_err) / (Q_cut**2 + U_cut**2)
+ ((Q_cut / I_cut) ** 2 + (U_cut / I_cut) ** 2) * I_cut_err**2
- 2.0 * (Q_cut / I_cut) * IQ_cut_err
- 2.0 * (U_cut / I_cut) * IU_cut_err
)
/ I_cut
)
/ I_cut
)
P_cut_stat_err = (
P_cut
/ I_cut
* np.sqrt(
I_cut_stat_err
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
)
)
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
U_cut**2 * Q_cut_err**2 + Q_cut**2 * U_cut_err**2 - 2.0 * Q_cut * U_cut * QU_cut_err
)
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
U_cut**2 * Q_cut_err**2 + Q_cut**2 * U_cut_err**2 - 2.0 * Q_cut * U_cut * QU_cut_err
)
if hasattr(self, "cont"):
self.cont.remove()
@@ -3480,22 +3538,23 @@ class pol_map(object):
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
)
+ "\n"
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
+ "\n"
+ r"$\Psi^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
+ str_conf
)
self.str_cut = ""
# self.str_cut = (
# "\n"
# + r"$F_{{\lambda}}^{{cut}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
# )
# + "\n"
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + "\n"
# + r"$\Psi^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
# )
if cut:
self.str_cut = (
"\n"
+ r"$F_{{\lambda}}^{{cut}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(
self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
)
+ "\n"
+ r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
+ "\n"
+ r"$\Psi^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
)
self.an_int = ax.annotate(
self.str_int + self.str_cut,
color="white",
@@ -3522,16 +3581,17 @@ class pol_map(object):
+ str_conf
)
str_cut = ""
# str_cut = (
# "\n"
# + r"$F_{{\lambda}}^{{cut}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
# )
# + "\n"
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
# + "\n"
# + r"$\Psi^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
# )
if cut:
str_cut = (
"\n"
+ r"$F_{{\lambda}}^{{cut}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(
self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
)
+ "\n"
+ r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
+ "\n"
+ r"$\Psi^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
)
ax.annotate(
str_int + str_cut,
color="white",

View File

@@ -1301,12 +1301,12 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
# Statistical error: Poisson noise is assumed
sigma_flux = np.array([np.sqrt(flux / head["exptime"]) for flux, head in zip(pol_flux, pol_headers)])
s_IQU_stat = np.zeros(Stokes_cov.shape)
Stokes_cov_stat = np.zeros(Stokes_cov.shape)
for i in range(3):
s_IQU_stat[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
Stokes_cov_stat[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
for j in [k for k in range(3) if k > i]:
s_IQU_stat[i, j] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
s_IQU_stat[j, i] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
Stokes_cov_stat[i, j] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
Stokes_cov_stat[j, i] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
# Compute the derivative of each Stokes parameter with respect to the polarizer orientation
dIQU_dtheta = np.zeros(Stokes_cov.shape)
@@ -1359,19 +1359,19 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
)
# Compute the uncertainty associated with the polarizers' orientation (see Kishimoto 1999)
s_IQU_axis = np.zeros(Stokes_cov.shape)
Stokes_cov_axis = np.zeros(Stokes_cov.shape)
for i in range(3):
s_IQU_axis[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
Stokes_cov_axis[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
for j in [k for k in range(3) if k > i]:
s_IQU_axis[i, j] = np.sum(
Stokes_cov_axis[i, j] = np.sum(
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
)
s_IQU_axis[j, i] = np.sum(
Stokes_cov_axis[j, i] = np.sum(
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
)
# Add quadratically the uncertainty to the Stokes covariance matrix
Stokes_cov += s_IQU_axis + s_IQU_stat
Stokes_cov += Stokes_cov_axis + Stokes_cov_stat
# Save values to single header
header_stokes = pol_headers[0]
@@ -1445,10 +1445,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
return Stokes, Stokes_cov, header_stokes, s_IQU_stat
return Stokes, Stokes_cov, header_stokes, Stokes_cov_stat
def compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
def compute_pol(Stokes, Stokes_cov, header_stokes, Stokes_cov_stat=None):
"""
Compute the polarization degree (in %) and angle (in deg) and their
respective errors from given Stokes parameters.
@@ -1524,7 +1524,7 @@ def compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
s_P_P = np.ones(Stokes[0].shape) * fmax
s_PA_P = np.ones(Stokes[0].shape) * fmax
maskP = np.logical_and(mask, P > 0.0)
if s_IQU_stat is not None:
if Stokes_cov_stat is not None:
# If IQU covariance matrix containing only statistical error is given propagate to P and PA
# Catch Invalid value in sqrt when diagonal terms are big
with warnings.catch_warnings(record=True) as _:
@@ -1532,13 +1532,15 @@ def compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
P[maskP]
/ Stokes[0][maskP]
* np.sqrt(
s_IQU_stat[0, 0][maskP]
- 2.0 / (Stokes[0][maskP] * P[maskP] ** 2) * (Stokes[1][maskP] * s_IQU_stat[0, 1][maskP] + Stokes[2][maskP] * s_IQU_stat[0, 2][maskP])
Stokes_cov_stat[0, 0][maskP]
- 2.0
/ (Stokes[0][maskP] * P[maskP] ** 2)
* (Stokes[1][maskP] * Stokes_cov_stat[0, 1][maskP] + Stokes[2][maskP] * Stokes_cov_stat[0, 2][maskP])
+ 1.0
/ (Stokes[0][maskP] ** 2 * P[maskP] ** 4)
* (
Stokes[1][maskP] ** 2 * s_IQU_stat[1, 1][maskP]
+ Stokes[2][maskP] ** 2 * s_IQU_stat[2, 2][maskP] * Stokes[1][maskP] * Stokes[2][maskP] * s_IQU_stat[1, 2][maskP]
Stokes[1][maskP] ** 2 * Stokes_cov_stat[1, 1][maskP]
+ Stokes[2][maskP] ** 2 * Stokes_cov_stat[2, 2][maskP] * Stokes[1][maskP] * Stokes[2][maskP] * Stokes_cov_stat[1, 2][maskP]
)
)
)
@@ -1546,9 +1548,9 @@ def compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
90.0
/ (np.pi * Stokes[0][maskP] ** 2 * P[maskP] ** 2)
* (
Stokes[1][maskP] ** 2 * s_IQU_stat[2, 2][maskP]
+ Stokes[2][maskP] * s_IQU_stat[1, 1][maskP]
- 2.0 * Stokes[1][maskP] * Stokes[2][maskP] * s_IQU_stat[1, 2][maskP]
Stokes[1][maskP] ** 2 * Stokes_cov_stat[2, 2][maskP]
+ Stokes[2][maskP] * Stokes_cov_stat[1, 1][maskP]
- 2.0 * Stokes[1][maskP] * Stokes[2][maskP] * Stokes_cov_stat[1, 2][maskP]
)
)
else:
@@ -1576,7 +1578,7 @@ def compute_pol(Stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
def rotate_Stokes(Stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=None, SNRi_cut=None):
def rotate_Stokes(Stokes, Stokes_cov, data_mask, header_stokes, Stokes_cov_stat=None, SNRi_cut=None):
"""
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
matrix to rotate Q, U of a given angle in degrees and update header
@@ -1642,16 +1644,16 @@ def rotate_Stokes(Stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=None,
new_Stokes[:3, i, j] = np.dot(mrot, new_Stokes[:3, i, j])
new_Stokes_cov[:3, :3, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:3, :3, i, j], mrot.T))
if s_IQU_stat is not None:
s_IQU_stat = zeropad(s_IQU_stat, [*s_IQU_stat.shape[:-2], *shape])
new_s_IQU_stat = np.zeros((*s_IQU_stat.shape[:-2], *shape))
if Stokes_cov_stat is not None:
Stokes_cov_stat = zeropad(Stokes_cov_stat, [*Stokes_cov_stat.shape[:-2], *shape])
new_Stokes_cov_stat = np.zeros((*Stokes_cov_stat.shape[:-2], *shape))
for i in range(3):
for j in range(3):
new_s_IQU_stat[i, j] = sc_rotate(s_IQU_stat[i, j], ang, order=1, reshape=False, cval=0.0)
new_s_IQU_stat[i, i] = np.abs(new_s_IQU_stat[i, i])
new_Stokes_cov_stat[i, j] = sc_rotate(Stokes_cov_stat[i, j], ang, order=1, reshape=False, cval=0.0)
new_Stokes_cov_stat[i, i] = np.abs(new_Stokes_cov_stat[i, i])
for i in range(shape[0]):
for j in range(shape[1]):
new_s_IQU_stat[:3, :3, i, j] = np.dot(mrot, np.dot(new_s_IQU_stat[:3, :3, i, j], mrot.T))
new_Stokes_cov_stat[:3, :3, i, j] = np.dot(mrot, np.dot(new_Stokes_cov_stat[:3, :3, i, j], mrot.T))
# Update headers to new angle
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
@@ -1701,8 +1703,8 @@ def rotate_Stokes(Stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=None,
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
if s_IQU_stat is not None:
return new_Stokes, new_Stokes_cov, new_data_mask, new_header_stokes, new_s_IQU_stat
if Stokes_cov_stat is not None:
return new_Stokes, new_Stokes_cov, new_data_mask, new_header_stokes, new_Stokes_cov_stat
else:
return new_Stokes, new_Stokes_cov, new_data_mask, new_header_stokes