correction on principal angle computation
This commit is contained in:
@@ -13,6 +13,7 @@ import numpy as np
|
||||
from astropy.io import fits
|
||||
from astropy import wcs
|
||||
from lib.convex_hull import image_hull, clean_ROI
|
||||
from lib.plots import princ_angle
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
@@ -66,6 +67,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
new_wcs.wcs.cdelt = new_cdelt
|
||||
for key, val in new_wcs.to_header().items():
|
||||
header[key] = val
|
||||
header['orientat'] = princ_angle(float(header['orientat']))
|
||||
|
||||
if compute_flux:
|
||||
for i in range(len(infiles)):
|
||||
|
||||
@@ -51,12 +51,12 @@ from astropy.io import fits
|
||||
|
||||
def princ_angle(ang):
|
||||
"""
|
||||
Return the principal angle in the 0-180° quadrant.
|
||||
Return the principal angle in the -180° to 180° quadrant.
|
||||
"""
|
||||
while ang < 0.:
|
||||
ang += 180.
|
||||
while ang <= -180.:
|
||||
ang += 360.
|
||||
while ang > 180.:
|
||||
ang -= 180.
|
||||
ang -= 360.
|
||||
return ang
|
||||
|
||||
|
||||
@@ -1808,8 +1808,8 @@ class pol_map(object):
|
||||
P_reg = np.sqrt(Q_reg**2+U_reg**2)/I_reg
|
||||
P_reg_err = np.sqrt((Q_reg**2*Q_reg_err**2 + U_reg**2*U_reg_err**2 + 2.*Q_reg*U_reg*QU_reg_err)/(Q_reg**2 + U_reg**2) + ((Q_reg/I_reg)**2 + (U_reg/I_reg)**2)*I_reg_err**2 - 2.*(Q_reg/I_reg)*IQ_reg_err - 2.*(U_reg/I_reg)*IU_reg_err)/I_reg
|
||||
|
||||
PA_reg = princ_angle((90./np.pi)*np.arctan2(U_reg,Q_reg))
|
||||
PA_reg_err = (90./(np.pi*(Q_reg**2+U_reg**2)))*np.sqrt(U_reg**2*Q_reg_err**2 + Q_reg**2*U_reg_err**2 - 2.*Q_reg*U_reg*QU_reg_err)
|
||||
PA_reg = np.degrees((1./2.)*np.arctan2(U_reg,Q_reg))
|
||||
PA_reg_err = princ_angle(np.degrees((1./(2.*(Q_reg**2+U_reg**2)))*np.sqrt(U_reg**2*Q_reg_err**2 + Q_reg**2*U_reg_err**2 - 2.*Q_reg*U_reg*QU_reg_err)))
|
||||
|
||||
if hasattr(self, 'cont'):
|
||||
for coll in self.cont.collections:
|
||||
|
||||
@@ -488,11 +488,13 @@ def get_error(data_array, headers, error_array=None, data_mask=None,
|
||||
rectangle.append([minima[1], minima[0], sub_shape[1], sub_shape[0], 0., 'r'])
|
||||
# Compute error : root mean square of the background
|
||||
sub_image = image[minima[0]:minima[0]+sub_shape[0],minima[1]:minima[1]+sub_shape[1]]
|
||||
#error = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||
#bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||
bkg = np.sqrt(np.sum((sub_image-sub_image.mean())**2)/sub_image.size)
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
|
||||
#Substract background
|
||||
data_array[i] = np.abs(data_array[i] - sub_image.mean())
|
||||
|
||||
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
|
||||
#wavelength dependence of the polariser filters
|
||||
#estimated to less than 1%
|
||||
@@ -1087,7 +1089,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
||||
if not(FWHM is None) and (smoothing.lower() in ['gaussian','gauss']):
|
||||
# Smooth by convoluting with a gaussian each polX image.
|
||||
pol_array, polerr_array = smooth_data(pol_array, polerr_array,
|
||||
data_mask, headers_array, FWHM=FWHM, scale=scale)
|
||||
data_mask, headers, FWHM=FWHM, scale=scale)
|
||||
pol0, pol60, pol120 = pol_array
|
||||
err0, err60, err120 = polerr_array
|
||||
|
||||
@@ -1294,8 +1296,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted
|
||||
P_diluted_err = (1./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
|
||||
|
||||
PA_diluted = princ_angle((90./np.pi)*np.arctan2(U_diluted,Q_diluted))
|
||||
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
||||
PA_diluted = np.degrees((1./2.)*np.arctan2(U_diluted,Q_diluted))
|
||||
PA_diluted_err = princ_angle(np.degrees((1./(2.*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)))
|
||||
|
||||
for header in headers:
|
||||
header['P_int'] = (P_diluted, 'Integrated polarization degree')
|
||||
@@ -1470,7 +1472,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
for i,head in enumerate(headers):
|
||||
ang[i] = -head['orientat']
|
||||
ang = ang.mean()
|
||||
alpha = ang*np.pi/180.
|
||||
alpha = np.radians(ang)
|
||||
mrot = np.array([[1., 0., 0.],
|
||||
[0., np.cos(2.*alpha), np.sin(2.*alpha)],
|
||||
[0, -np.sin(2.*alpha), np.cos(2.*alpha)]])
|
||||
@@ -1553,8 +1555,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted
|
||||
P_diluted_err = (1./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
|
||||
|
||||
PA_diluted = princ_angle((90./np.pi)*np.arctan2(U_diluted,Q_diluted))
|
||||
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
||||
PA_diluted = np.degrees((1./2.)*np.arctan2(U_diluted,Q_diluted))
|
||||
PA_diluted_err = princ_angle(np.degrees((1./(1.*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)))
|
||||
|
||||
for header in new_headers:
|
||||
header['P_int'] = (P_diluted, 'Integrated polarization degree')
|
||||
|
||||
Reference in New Issue
Block a user