correction on principal angle computation

This commit is contained in:
Tibeuleu
2022-10-28 15:17:54 +02:00
parent 700cc7e4df
commit da805b71f1
27 changed files with 38 additions and 38 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 580 KiB

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 648 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 160 KiB

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 391 KiB

After

Width:  |  Height:  |  Size: 196 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 299 KiB

After

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 374 KiB

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 328 KiB

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 998 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

After

Width:  |  Height:  |  Size: 234 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 714 KiB

After

Width:  |  Height:  |  Size: 158 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 647 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 KiB

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 409 KiB

After

Width:  |  Height:  |  Size: 309 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 349 KiB

After

Width:  |  Height:  |  Size: 282 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 388 KiB

After

Width:  |  Height:  |  Size: 311 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 440 KiB

After

Width:  |  Height:  |  Size: 382 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 920 KiB

After

Width:  |  Height:  |  Size: 854 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 KiB

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

View File

@@ -18,18 +18,18 @@ from astropy.wcs import WCS
##### User inputs
## Input and output locations
globals()['data_folder'] = "../data/NGC1068_x274020/"
#globals()['infiles'] = ['xn1c400.fits','xn2c400.fits','xn3c400.fits']
globals()['infiles'] = ['x274020at_c0f.fits','x274020bt_c0f.fits','x274020ct_c0f.fits',
'x274020dt_c0f.fits','x274020et_c0f.fits','x274020ft_c0f.fits',
'x274020gt_c0f.fits','x274020ht_c0f.fits','x274020it_c0f.fits']
#psf_file = 'NGC1068_f253m00.fits'
globals()['plots_folder'] = "../plots/NGC1068_x274020/"
#globals()['data_folder'] = "../data/NGC1068_x274020/"
##globals()['infiles'] = ['xn1c400.fits','xn2c400.fits','xn3c400.fits']
#globals()['infiles'] = ['x274020at_c0f.fits','x274020bt_c0f.fits','x274020ct_c0f.fits',
# 'x274020dt_c0f.fits','x274020et_c0f.fits','x274020ft_c0f.fits',
# 'x274020gt_c0f.fits','x274020ht_c0f.fits','x274020it_c0f.fits']
##psf_file = 'NGC1068_f253m00.fits'
#globals()['plots_folder'] = "../plots/NGC1068_x274020/"
#globals()['data_folder'] = "../data/IC5063_x3nl030/"
#globals()['infiles'] = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
##psf_file = 'IC5063_f502m00.fits'
#globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
globals()['data_folder'] = "../data/IC5063_x3nl030/"
globals()['infiles'] = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
#psf_file = 'IC5063_f502m00.fits'
globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
#globals()['data_folder'] = "../data/NGC1068_x14w010/"
#globals()['infiles'] = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
@@ -129,26 +129,26 @@ def main():
# Data binning
rebin = True
if rebin:
pxsize = 10
px_scale = 'pixel' #pixel, arcsec or full
pxsize = 0.10
px_scale = 'arcsec' #pixel, arcsec or full
rebin_operation = 'sum' #sum or average
# Alignement
align_center = 'image' #If None will align image to image center
display_data = False
# Smoothing
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = None #If None, no smoothing is done
smoothing_FWHM = 0.20 #If None, no smoothing is done
smoothing_scale = 'arcsec' #pixel or arcsec
# Rotation
rotate_stokes = True #rotation to North convention can give erroneous results
rotate_data = False #rotation to North convention can give erroneous results
# Final crop
crop = False #Crop to desired ROI
final_display = False
final_display = True
# Polarization map output
figname = 'NGC1068_K_FOC' #target/intrument name
figtype = '_bin10px' #additionnal informations
SNRp_cut = 5. #P measurments with SNR>3
figname = 'IC5063_FOC' #target/intrument name
figtype = '_combine_FWHM020' #additionnal informations
SNRp_cut = 3. #P measurments with SNR>3
SNRi_cut = 30. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
# if step_vec = 0 then all vectors are displayed at full length

View File

@@ -80,12 +80,8 @@ print('From my pipeline :\n', "P = {0:.2f} ± {1:.2f} %\n".format(data_S['P_dil'
print("From Kishimoto's pipeline :\n", "P = {0:.2f} ± {1:.2f} %\n".format(data_K['P_dil']*100.,data_K['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_K['PA_dil'],data_K['sPA_dil']))
#compare different types of error
xx, yy = np.indices(data_S['mask'].shape)
mask_ind = np.array([[y,x] for y,x in zip(yy[data_S['mask']],xx[data_S['mask']])])
index = mask_ind[np.random.randint(len(mask_ind))]
print("My pipeline : sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_S['sI'][index[0],index[1]]/data_S['I'][index[0],index[1]]),np.mean(data_S['sQ'][index[0],index[1]]/data_S['Q'][index[0],index[1]]),np.mean(data_S['sU'][index[0],index[1]]/data_S['U'][index[0],index[1]]),np.mean(data_S['sP'][index[0],index[1]]/data_S['P'][index[0],index[1]])))
print("Kishimoto's pipeline : sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_K['sI'][index[0],index[1]]/data_K['I'][index[0],index[1]]),np.mean(data_K['sQ'][index[0],index[1]]/data_K['Q'][index[0],index[1]]),np.mean(data_K['sU'][index[0],index[1]]/data_K['U'][index[0],index[1]]),np.mean(data_K['sP'][index[0],index[1]]/data_K['P'][index[0],index[1]])))
print("For random pixel in cut at {}".format(index))
print("My pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_S['sI'][data_S['mask']]/data_S['I'][data_S['mask']]),np.mean(data_S['sQ'][data_S['mask']]/data_S['Q'][data_S['mask']]),np.mean(data_S['sU'][data_S['mask']]/data_S['U'][data_S['mask']]),np.mean(data_S['sP'][data_S['mask']]/data_S['P'][data_S['mask']])))
print("Kishimoto's pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_K['sI'][data_S['mask']]/data_K['I'][data_S['mask']]),np.mean(data_K['sQ'][data_S['mask']]/data_K['Q'][data_S['mask']]),np.mean(data_K['sU'][data_S['mask']]/data_K['U'][data_S['mask']]),np.mean(data_K['sP'][data_S['mask']]/data_K['P'][data_S['mask']])))
for d,i in zip(['I','Q','U','P','PA','sI','sQ','sU','sP','sPA'],[0,1,2,5,8,(3,0,0),(3,1,1),(3,2,2),6,9]):
data_K[d] = np.loadtxt(path_join(root_dir_K,d+'.txt'))
with fits.open(path_join(root_dir_data_S,'NGC1068_K_FOC_bin10px.fits')) as f:

View File

@@ -13,6 +13,7 @@ import numpy as np
from astropy.io import fits
from astropy import wcs
from lib.convex_hull import image_hull, clean_ROI
from lib.plots import princ_angle
import matplotlib.pyplot as plt
@@ -66,6 +67,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
new_wcs.wcs.cdelt = new_cdelt
for key, val in new_wcs.to_header().items():
header[key] = val
header['orientat'] = princ_angle(float(header['orientat']))
if compute_flux:
for i in range(len(infiles)):

View File

@@ -51,12 +51,12 @@ from astropy.io import fits
def princ_angle(ang):
"""
Return the principal angle in the 0-180° quadrant.
Return the principal angle in the -180° to 180° quadrant.
"""
while ang < 0.:
ang += 180.
while ang <= -180.:
ang += 360.
while ang > 180.:
ang -= 180.
ang -= 360.
return ang
@@ -1808,8 +1808,8 @@ class pol_map(object):
P_reg = np.sqrt(Q_reg**2+U_reg**2)/I_reg
P_reg_err = np.sqrt((Q_reg**2*Q_reg_err**2 + U_reg**2*U_reg_err**2 + 2.*Q_reg*U_reg*QU_reg_err)/(Q_reg**2 + U_reg**2) + ((Q_reg/I_reg)**2 + (U_reg/I_reg)**2)*I_reg_err**2 - 2.*(Q_reg/I_reg)*IQ_reg_err - 2.*(U_reg/I_reg)*IU_reg_err)/I_reg
PA_reg = princ_angle((90./np.pi)*np.arctan2(U_reg,Q_reg))
PA_reg_err = (90./(np.pi*(Q_reg**2+U_reg**2)))*np.sqrt(U_reg**2*Q_reg_err**2 + Q_reg**2*U_reg_err**2 - 2.*Q_reg*U_reg*QU_reg_err)
PA_reg = np.degrees((1./2.)*np.arctan2(U_reg,Q_reg))
PA_reg_err = princ_angle(np.degrees((1./(2.*(Q_reg**2+U_reg**2)))*np.sqrt(U_reg**2*Q_reg_err**2 + Q_reg**2*U_reg_err**2 - 2.*Q_reg*U_reg*QU_reg_err)))
if hasattr(self, 'cont'):
for coll in self.cont.collections:

View File

@@ -488,11 +488,13 @@ def get_error(data_array, headers, error_array=None, data_mask=None,
rectangle.append([minima[1], minima[0], sub_shape[1], sub_shape[0], 0., 'r'])
# Compute error : root mean square of the background
sub_image = image[minima[0]:minima[0]+sub_shape[0],minima[1]:minima[1]+sub_shape[1]]
#error = np.std(sub_image) # Previously computed using standard deviation over the background
#bkg = np.std(sub_image) # Previously computed using standard deviation over the background
bkg = np.sqrt(np.sum((sub_image-sub_image.mean())**2)/sub_image.size)
error_bkg[i] *= bkg
#Substract background
data_array[i] = np.abs(data_array[i] - sub_image.mean())
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
#wavelength dependence of the polariser filters
#estimated to less than 1%
@@ -1087,7 +1089,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
if not(FWHM is None) and (smoothing.lower() in ['gaussian','gauss']):
# Smooth by convoluting with a gaussian each polX image.
pol_array, polerr_array = smooth_data(pol_array, polerr_array,
data_mask, headers_array, FWHM=FWHM, scale=scale)
data_mask, headers, FWHM=FWHM, scale=scale)
pol0, pol60, pol120 = pol_array
err0, err60, err120 = polerr_array
@@ -1294,8 +1296,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted
P_diluted_err = (1./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
PA_diluted = princ_angle((90./np.pi)*np.arctan2(U_diluted,Q_diluted))
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
PA_diluted = np.degrees((1./2.)*np.arctan2(U_diluted,Q_diluted))
PA_diluted_err = princ_angle(np.degrees((1./(2.*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)))
for header in headers:
header['P_int'] = (P_diluted, 'Integrated polarization degree')
@@ -1470,7 +1472,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
for i,head in enumerate(headers):
ang[i] = -head['orientat']
ang = ang.mean()
alpha = ang*np.pi/180.
alpha = np.radians(ang)
mrot = np.array([[1., 0., 0.],
[0., np.cos(2.*alpha), np.sin(2.*alpha)],
[0, -np.sin(2.*alpha), np.cos(2.*alpha)]])
@@ -1553,8 +1555,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted
P_diluted_err = (1./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
PA_diluted = princ_angle((90./np.pi)*np.arctan2(U_diluted,Q_diluted))
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
PA_diluted = np.degrees((1./2.)*np.arctan2(U_diluted,Q_diluted))
PA_diluted_err = princ_angle(np.degrees((1./(1.*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)))
for header in new_headers:
header['P_int'] = (P_diluted, 'Integrated polarization degree')