merge CZ fork to testing, prepare pipeline for clenup and fix
This commit is contained in:
@@ -5,26 +5,19 @@ Main script where are progressively added the steps for the FOC pipeline reducti
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
# Project libraries
|
# Project libraries
|
||||||
|
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
import os
|
|
||||||
from os import system
|
from os import system
|
||||||
from os.path import exists as path_exists
|
from os.path import exists as path_exists
|
||||||
|
|
||||||
from matplotlib.colors import LogNorm
|
import lib.fits as proj_fits # Functions to handle fits files
|
||||||
|
import lib.plots as proj_plots # Functions for plotting data
|
||||||
|
import lib.reduction as proj_red # Functions used in reduction pipeline
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from lib.utils import princ_angle, sci_not
|
||||||
from lib.background import subtract_bkg
|
from matplotlib.colors import LogNorm
|
||||||
import lib.fits as proj_fits # Functions to handle fits files
|
|
||||||
import lib.reduction as proj_red # Functions used in reduction pipeline
|
|
||||||
import lib.plots as proj_plots # Functions for plotting data
|
|
||||||
from lib.utils import sci_not, princ_angle
|
|
||||||
|
|
||||||
|
|
||||||
|
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False):
|
||||||
|
|
||||||
|
|
||||||
def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir="./data", crop=False, interactive=False):
|
|
||||||
# Reduction parameters
|
# Reduction parameters
|
||||||
# Deconvolution
|
# Deconvolution
|
||||||
deconvolve = False
|
deconvolve = False
|
||||||
@@ -42,10 +35,8 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
display_crop = False
|
display_crop = False
|
||||||
|
|
||||||
# Background estimation
|
# Background estimation
|
||||||
|
|
||||||
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||||
subtract_error = 1.0
|
subtract_error = 1.0
|
||||||
|
|
||||||
display_bkg = False
|
display_bkg = False
|
||||||
|
|
||||||
# Data binning
|
# Data binning
|
||||||
@@ -55,7 +46,6 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
|
|
||||||
# Alignement
|
# Alignement
|
||||||
align_center = "center" # If None will not align the images
|
align_center = "center" # If None will not align the images
|
||||||
|
|
||||||
display_align = False
|
display_align = False
|
||||||
display_data = False
|
display_data = False
|
||||||
|
|
||||||
@@ -64,7 +54,7 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
|
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||||
smoothing_FWHM = 0.1 # If None, no smoothing is done
|
smoothing_FWHM = 0.10 # If None, no smoothing is done
|
||||||
smoothing_scale = "arcsec" # pixel or arcsec
|
smoothing_scale = "arcsec" # pixel or arcsec
|
||||||
|
|
||||||
# Rotation
|
# Rotation
|
||||||
@@ -84,47 +74,37 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
# 3. Use the same alignment as the routine
|
# 3. Use the same alignment as the routine
|
||||||
# 4. Skip the rebinning step
|
# 4. Skip the rebinning step
|
||||||
# 5. Calulate the Stokes parameters without smoothing
|
# 5. Calulate the Stokes parameters without smoothing
|
||||||
optimal_binning = True
|
optimal_binning = False
|
||||||
optimize = False
|
optimize = False
|
||||||
|
|
||||||
# Pipeline start
|
# Pipeline start
|
||||||
|
|
||||||
# Step 1:
|
# Step 1:
|
||||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||||
outfiles = []
|
outfiles = []
|
||||||
if data_dir is None:
|
if infiles is not None:
|
||||||
if infiles is not None:
|
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
|
||||||
prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str)
|
obs_dir = "/".join(infiles[0].split("/")[:-1])
|
||||||
obs_dir = "/".join(infiles[0].split("/")[:-1])
|
if not path_exists(obs_dir):
|
||||||
if not path_exists(obs_dir):
|
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
|
||||||
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
|
|
||||||
if target is None:
|
|
||||||
target = input("Target name:\n>")
|
|
||||||
else:
|
|
||||||
from lib.query import retrieve_products
|
|
||||||
target, products = retrieve_products(target, proposal_id, output_dir=output_dir)
|
|
||||||
prod = products.pop()
|
|
||||||
for prods in products:
|
|
||||||
outfiles.append(main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir, crop=crop, interactive=interactive))
|
|
||||||
data_folder = prod[0][0]
|
|
||||||
|
|
||||||
infiles = [p[1] for p in prod]
|
|
||||||
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
|
||||||
|
|
||||||
else:
|
|
||||||
infiles = [f for f in os.listdir(data_dir) if f.endswith('.fits') and f.startswith('x')]
|
|
||||||
data_folder = data_dir
|
|
||||||
if target is None:
|
if target is None:
|
||||||
target = input("Target name:\n>")
|
target = input("Target name:\n>")
|
||||||
|
else:
|
||||||
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
from lib.query import retrieve_products
|
||||||
|
|
||||||
|
target, products = retrieve_products(target, proposal_id, output_dir=output_dir)
|
||||||
|
prod = products.pop()
|
||||||
|
for prods in products:
|
||||||
|
outfiles.append(main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir, crop=crop, interactive=interactive)[0])
|
||||||
|
data_folder = prod[0][0]
|
||||||
try:
|
try:
|
||||||
plots_folder = data_folder.replace("data", "plots")
|
plots_folder = data_folder.replace("data", "plots")
|
||||||
except ValueError:
|
except ValueError:
|
||||||
plots_folder = "."
|
plots_folder = "."
|
||||||
if not path_exists(plots_folder):
|
if not path_exists(plots_folder):
|
||||||
system("mkdir -p {0:s} ".format(plots_folder))
|
system("mkdir -p {0:s} ".format(plots_folder))
|
||||||
|
infiles = [p[1] for p in prod]
|
||||||
|
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
||||||
|
|
||||||
figname = "_".join([target, "FOC"])
|
figname = "_".join([target, "FOC"])
|
||||||
figtype = ""
|
figtype = ""
|
||||||
@@ -133,65 +113,129 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
figtype = "".join(["b", "{0:.2f}".format(pxsize), pxscale]) # additionnal informations
|
figtype = "".join(["b", "{0:.2f}".format(pxsize), pxscale]) # additionnal informations
|
||||||
else:
|
else:
|
||||||
figtype = "full"
|
figtype = "full"
|
||||||
|
|
||||||
if smoothing_FWHM is not None and smoothing_scale is not None:
|
if smoothing_FWHM is not None and smoothing_scale is not None:
|
||||||
smoothstr = "".join([*[s[0] for s in smoothing_function.split("_")], "{0:.2f}".format(smoothing_FWHM), smoothing_scale])
|
smoothstr = "".join([*[s[0] for s in smoothing_function.split("_")], "{0:.2f}".format(smoothing_FWHM), smoothing_scale])
|
||||||
figtype = "_".join([figtype, smoothstr] if figtype != "" else [smoothstr])
|
figtype = "_".join([figtype, smoothstr] if figtype != "" else [smoothstr])
|
||||||
|
|
||||||
if deconvolve:
|
if deconvolve:
|
||||||
figtype = "_".join([figtype, "deconv"] if figtype != "" else ["deconv"])
|
figtype = "_".join([figtype, "deconv"] if figtype != "" else ["deconv"])
|
||||||
|
|
||||||
if align_center is None:
|
if align_center is None:
|
||||||
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
|
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
|
||||||
|
|
||||||
if optimal_binning:
|
if optimal_binning:
|
||||||
options = {'optimize': optimize, 'optimal_binning': True}
|
from lib.background import subtract_bkg
|
||||||
|
|
||||||
|
options = {"optimize": optimize, "optimal_binning": True}
|
||||||
|
|
||||||
# Step 1: Load the data again and preserve the full images
|
# Step 1: Load the data again and preserve the full images
|
||||||
_data_array, _headers = deepcopy(data_array), deepcopy(headers) # Preserve full images
|
_data_array, _headers = deepcopy(data_array), deepcopy(headers) # Preserve full images
|
||||||
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
# Step 2: Skip the cropping step but use the same error and background estimation (I don't understand why this is wrong)
|
# Step 2: Skip the cropping step but use the same error and background estimation (I don't understand why this is wrong)
|
||||||
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True,
|
data_array, error_array, headers = proj_red.crop_array(
|
||||||
display=display_crop, savename=figname, plots_folder=plots_folder)
|
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
|
||||||
|
)
|
||||||
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
background = None
|
background = None
|
||||||
_, _, _, background, error_bkg = proj_red.get_error(data_array, headers, error_array, data_mask=data_mask, sub_type=error_sub_type, subtract_error=subtract_error, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=True)
|
_, _, _, background, error_bkg = proj_red.get_error(
|
||||||
|
data_array,
|
||||||
|
headers,
|
||||||
|
error_array,
|
||||||
|
data_mask=data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=subtract_error,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=True,
|
||||||
|
)
|
||||||
|
|
||||||
# _background is the same as background, but for the optimal binning
|
# _background is the same as background, but for the optimal binning
|
||||||
_background = None
|
_background = None
|
||||||
_data_array, _error_array, _, = proj_red.get_error(_data_array, _headers, error_array=None, data_mask=_data_mask, sub_type=error_sub_type, subtract_error=False, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=False)
|
_data_array, _error_array, _ = proj_red.get_error(
|
||||||
|
_data_array,
|
||||||
|
_headers,
|
||||||
|
error_array=None,
|
||||||
|
data_mask=_data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=False,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=False,
|
||||||
|
)
|
||||||
_error_bkg = np.ones_like(_data_array) * error_bkg[:, 0, 0, np.newaxis, np.newaxis]
|
_error_bkg = np.ones_like(_data_array) * error_bkg[:, 0, 0, np.newaxis, np.newaxis]
|
||||||
_data_array, _error_array, _background, _ = subtract_bkg(_data_array, _error_array, _data_mask, background, _error_bkg)
|
_data_array, _error_array, _background, _ = subtract_bkg(_data_array, _error_array, _data_mask, background, _error_bkg)
|
||||||
|
|
||||||
# Step 3: Align and rescale images with oversampling. (has to disable croping in align_data function)
|
# Step 3: Align and rescale images with oversampling. (has to disable croping in align_data function)
|
||||||
_data_array, _error_array, _headers, _, shifts, error_shifts = proj_red.align_data(_data_array, _headers, error_array=_error_array, background=_background,
|
_data_array, _error_array, _headers, _, shifts, error_shifts = proj_red.align_data(
|
||||||
upsample_factor=10, ref_center=align_center, return_shifts=True, optimal_binning=True)
|
_data_array,
|
||||||
|
_headers,
|
||||||
|
error_array=_error_array,
|
||||||
|
background=_background,
|
||||||
|
upsample_factor=10,
|
||||||
|
ref_center=align_center,
|
||||||
|
return_shifts=True,
|
||||||
|
optimal_binning=True,
|
||||||
|
)
|
||||||
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
||||||
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
# Step 4: Compute Stokes I, Q, U
|
# Step 4: Compute Stokes I, Q, U
|
||||||
_background = np.array([np.array(bkg).reshape(1, 1) for bkg in _background])
|
_background = np.array([np.array(bkg).reshape(1, 1) for bkg in _background])
|
||||||
_background_error = np.array([np.array(np.sqrt((bkg-_background[np.array([h['filtnam1'] == head['filtnam1'] for h in _headers], dtype=bool)].mean())
|
_background_error = np.array(
|
||||||
** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in _headers]))).reshape(1, 1) for bkg, head in zip(_background, _headers)])
|
[
|
||||||
|
np.array(
|
||||||
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes = proj_red.compute_Stokes(_data_array, _error_array, _data_mask, _headers,
|
np.sqrt(
|
||||||
FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
|
(bkg - _background[np.array([h["filtnam1"] == head["filtnam1"] for h in _headers], dtype=bool)].mean()) ** 2
|
||||||
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg = proj_red.compute_Stokes(_background, _background_error, np.array(True).reshape(1, 1), _headers,
|
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in _headers])
|
||||||
FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
)
|
||||||
|
).reshape(1, 1)
|
||||||
|
for bkg, head in zip(_background, _headers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes = proj_red.compute_Stokes(
|
||||||
|
_data_array, _error_array, _data_mask, _headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||||
|
)
|
||||||
|
_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg = proj_red.compute_Stokes(
|
||||||
|
_background,
|
||||||
|
_background_error,
|
||||||
|
np.array(True).reshape(1, 1),
|
||||||
|
_headers,
|
||||||
|
FWHM=None,
|
||||||
|
scale=smoothing_scale,
|
||||||
|
smoothing=smoothing_function,
|
||||||
|
transmitcorr=False,
|
||||||
|
)
|
||||||
|
|
||||||
# Step 5: Compute polarimetric parameters (polarization degree and angle).
|
# Step 5: Compute polarimetric parameters (polarization degree and angle).
|
||||||
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes)
|
_P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P = proj_red.compute_pol(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _header_stokes)
|
||||||
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg)
|
_P_bkg, _debiased_P_bkg, _s_P_bkg, _s_P_P_bkg, _PA_bkg, _s_PA_bkg, _s_PA_P_bkg = proj_red.compute_pol(_I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg, _header_bkg)
|
||||||
|
|
||||||
# Step 6: Save image to FITS.
|
# Step 6: Save image to FITS.
|
||||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||||
_Stokes_hdul = proj_fits.save_Stokes(_I_stokes, _Q_stokes, _U_stokes, _Stokes_cov, _P, _debiased_P, _s_P, _s_P_P, _PA, _s_PA, _s_PA_P,
|
_Stokes_hdul = proj_fits.save_Stokes(
|
||||||
_header_stokes, _data_mask, figname, data_folder=data_folder, return_hdul=True)
|
_I_stokes,
|
||||||
|
_Q_stokes,
|
||||||
|
_U_stokes,
|
||||||
|
_Stokes_cov,
|
||||||
|
_P,
|
||||||
|
_debiased_P,
|
||||||
|
_s_P,
|
||||||
|
_s_P_P,
|
||||||
|
_PA,
|
||||||
|
_s_PA,
|
||||||
|
_s_PA_P,
|
||||||
|
_header_stokes,
|
||||||
|
_data_mask,
|
||||||
|
figname,
|
||||||
|
data_folder=data_folder,
|
||||||
|
return_hdul=True,
|
||||||
|
)
|
||||||
|
|
||||||
# Step 6:
|
# Step 6:
|
||||||
_data_mask = _Stokes_hdul['data_mask'].data.astype(bool)
|
_data_mask = _Stokes_hdul["data_mask"].data.astype(bool)
|
||||||
print(
|
print(
|
||||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
_header_stokes["PHOTPLAM"],
|
_header_stokes["PHOTPLAM"],
|
||||||
@@ -208,66 +252,196 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
# Background values
|
# Background values
|
||||||
print(
|
print(
|
||||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
_header_stokes["PHOTFLAM"], *sci_not(_I_bkg[0, 0] * _header_stokes["PHOTFLAM"], np.sqrt(_S_cov_bkg[0, 0][0, 0]) * _header_stokes["PHOTFLAM"], 2, out=int)
|
_header_stokes["PHOTFLAM"],
|
||||||
|
*sci_not(_I_bkg[0, 0] * _header_stokes["PHOTFLAM"], np.sqrt(_S_cov_bkg[0, 0][0, 0]) * _header_stokes["PHOTFLAM"], 2, out=int),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0] * 100.0, np.ceil(_s_P_bkg[0, 0] * 1000.0) / 10.0))
|
print("P_bkg = {0:.1f} ± {1:.1f} %".format(_debiased_P_bkg[0, 0] * 100.0, np.ceil(_s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(_PA_bkg[0, 0]), princ_angle(np.ceil(_s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||||
|
|
||||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
if pxscale.lower() not in ['full', 'integrate'] and not interactive:
|
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
proj_plots.polarization_map(
|
||||||
step_vec=step_vec, vec_scale=scale_vec, savename="_".join([figname]), plots_folder=plots_folder, **options)
|
deepcopy(_Stokes_hdul),
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
_data_mask,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "I"]), plots_folder=plots_folder, display='Intensity', **options)
|
SNRp_cut=SNRp_cut,
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux', **options)
|
flux_lim=flux_lim,
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
step_vec=step_vec,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "P"]), plots_folder=plots_folder, display='Pol_deg', **options)
|
vec_scale=scale_vec,
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
savename="_".join([figname]),
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "PA"]), plots_folder=plots_folder, display='Pol_ang', **options)
|
plots_folder=plots_folder,
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
**options,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "I_err"]), plots_folder=plots_folder, display='I_err', **options)
|
)
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
proj_plots.polarization_map(
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err', **options)
|
deepcopy(_Stokes_hdul),
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
_data_mask,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "SNRi"]), plots_folder=plots_folder, display='SNRi', **options)
|
SNRp_cut=SNRp_cut,
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
vec_scale=scale_vec, savename="_".join([figname, "SNRp"]), plots_folder=plots_folder, display='SNRp', **options)
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "I"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Intensity",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P_flux"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_Flux",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "PA"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_ang",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "I_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="I_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "P_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRi"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRi",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(_Stokes_hdul),
|
||||||
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
vec_scale=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRp"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRp",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
elif not interactive:
|
elif not interactive:
|
||||||
proj_plots.polarization_map(deepcopy(_Stokes_hdul), _data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
|
proj_plots.polarization_map(
|
||||||
savename=figname, plots_folder=plots_folder, display='integrate', **options)
|
deepcopy(_Stokes_hdul),
|
||||||
elif pxscale.lower() not in ['full', 'integrate']:
|
_data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
savename=figname,
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="integrate",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif pxscale.lower() not in ["full", "integrate"]:
|
||||||
proj_plots.pol_map(_Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
proj_plots.pol_map(_Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
options = {'optimize': optimize, 'optimal_binning': False}
|
options = {"optimize": optimize, "optimal_binning": False}
|
||||||
# Crop data to remove outside blank margins.
|
# Crop data to remove outside blank margins.
|
||||||
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True,
|
data_array, error_array, headers = proj_red.crop_array(
|
||||||
display=display_crop, savename=figname, plots_folder=plots_folder)
|
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
|
||||||
|
)
|
||||||
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
data_mask = np.ones(data_array[0].shape, dtype=bool)
|
||||||
|
|
||||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||||
if deconvolve:
|
if deconvolve:
|
||||||
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
|
data_array = proj_red.deconvolve_array(
|
||||||
|
data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo
|
||||||
|
)
|
||||||
|
|
||||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||||
background = None
|
background = None
|
||||||
data_array, error_array, headers, background, error_bkg = proj_red.get_error(data_array, headers, error_array, data_mask=data_mask, sub_type=error_sub_type, subtract_error=subtract_error, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=True)
|
data_array, error_array, headers, background, error_bkg = proj_red.get_error(
|
||||||
|
data_array,
|
||||||
|
headers,
|
||||||
|
error_array,
|
||||||
|
data_mask=data_mask,
|
||||||
|
sub_type=error_sub_type,
|
||||||
|
subtract_error=subtract_error,
|
||||||
|
display=display_bkg,
|
||||||
|
savename="_".join([figname, "errors"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
return_background=True,
|
||||||
|
)
|
||||||
|
|
||||||
# Align and rescale images with oversampling.
|
# Align and rescale images with oversampling.
|
||||||
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
|
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
|
||||||
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True)
|
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True
|
||||||
|
)
|
||||||
|
|
||||||
if display_align:
|
if display_align:
|
||||||
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
|
||||||
proj_plots.plot_obs(data_array, headers, savename="_".join([figname, str(align_center)]), plots_folder=plots_folder, norm=LogNorm(
|
proj_plots.plot_obs(
|
||||||
vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam']))
|
data_array,
|
||||||
|
headers,
|
||||||
|
savename="_".join([figname, str(align_center)]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
norm=LogNorm(
|
||||||
|
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
# Rebin data to desired pixel size.
|
# Rebin data to desired pixel size.
|
||||||
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
||||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
||||||
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask)
|
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
||||||
|
)
|
||||||
|
|
||||||
# Rotate data to have same orientation
|
# Rotate data to have same orientation
|
||||||
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
|
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
|
||||||
@@ -288,13 +462,29 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Plot array for checking output
|
# Plot array for checking output
|
||||||
if display_data and pxscale.lower() not in ['full', 'integrate']:
|
if display_data and pxscale.lower() not in ["full", "integrate"]:
|
||||||
proj_plots.plot_obs(data_array, headers, savename="_".join([figname, "rebin"]), plots_folder=plots_folder, norm=LogNorm(
|
proj_plots.plot_obs(
|
||||||
vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam']))
|
data_array,
|
||||||
|
headers,
|
||||||
|
savename="_".join([figname, "rebin"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
norm=LogNorm(
|
||||||
|
vmin=data_array[data_array > 0.0].min() * headers[0]["photflam"], vmax=data_array[data_array > 0.0].max() * headers[0]["photflam"]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
|
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
|
||||||
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1'] == head['filtnam1'] for h in headers], dtype=bool)].mean())
|
background_error = np.array(
|
||||||
** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
|
[
|
||||||
|
np.array(
|
||||||
|
np.sqrt(
|
||||||
|
(bkg - background[np.array([h["filtnam1"] == head["filtnam1"] for h in headers], dtype=bool)].mean()) ** 2
|
||||||
|
/ np.sum([h["filtnam1"] == head["filtnam1"] for h in headers])
|
||||||
|
)
|
||||||
|
).reshape(1, 1)
|
||||||
|
for bkg, head in zip(background, headers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
# Step 2:
|
# Step 2:
|
||||||
# Compute Stokes I, Q, U with smoothed polarized images
|
# Compute Stokes I, Q, U with smoothed polarized images
|
||||||
@@ -303,16 +493,28 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||||
# Bibcode : 1995chst.conf...10J
|
# Bibcode : 1995chst.conf...10J
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
||||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
|
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(
|
)
|
||||||
1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
||||||
|
background,
|
||||||
|
background_error,
|
||||||
|
np.array(True).reshape(1, 1),
|
||||||
|
headers,
|
||||||
|
FWHM=None,
|
||||||
|
scale=smoothing_scale,
|
||||||
|
smoothing=smoothing_function,
|
||||||
|
transmitcorr=False,
|
||||||
|
)
|
||||||
|
|
||||||
# Step 3:
|
# Step 3:
|
||||||
# Rotate images to have North up
|
# Rotate images to have North up
|
||||||
if rotate_North:
|
if rotate_North:
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None)
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None)
|
)
|
||||||
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
|
||||||
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
|
||||||
|
)
|
||||||
|
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||||
@@ -321,8 +523,24 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
# Step 4:
|
# Step 4:
|
||||||
# Save image to FITS.
|
# Save image to FITS.
|
||||||
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
figname = "_".join([figname, figtype]) if figtype != "" else figname
|
||||||
Stokes_hdul = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
|
Stokes_hdul = proj_fits.save_Stokes(
|
||||||
header_stokes, data_mask, figname, data_folder=data_folder, return_hdul=True)
|
I_stokes,
|
||||||
|
Q_stokes,
|
||||||
|
U_stokes,
|
||||||
|
Stokes_cov,
|
||||||
|
P,
|
||||||
|
debiased_P,
|
||||||
|
s_P,
|
||||||
|
s_P_P,
|
||||||
|
PA,
|
||||||
|
s_PA,
|
||||||
|
s_PA_P,
|
||||||
|
header_stokes,
|
||||||
|
data_mask,
|
||||||
|
figname,
|
||||||
|
data_folder=data_folder,
|
||||||
|
return_hdul=True,
|
||||||
|
)
|
||||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
|
|
||||||
# Step 5:
|
# Step 5:
|
||||||
@@ -331,11 +549,11 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
figname += "_crop"
|
figname += "_crop"
|
||||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
||||||
stokescrop.crop()
|
stokescrop.crop()
|
||||||
stokescrop.write_to("/".join([data_folder, figname+".fits"]))
|
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
||||||
Stokes_hdul, header_stokes = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
Stokes_hdul, header_stokes = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
||||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
|
|
||||||
data_mask = Stokes_hdul['data_mask'].data.astype(bool)
|
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
||||||
print(
|
print(
|
||||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
header_stokes["PHOTPLAM"],
|
header_stokes["PHOTPLAM"],
|
||||||
@@ -352,55 +570,161 @@ def main(target=None, proposal_id=None, data_dir=None, infiles=None, output_dir=
|
|||||||
# Background values
|
# Background values
|
||||||
print(
|
print(
|
||||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
header_stokes["PHOTPLAM"], *sci_not(I_bkg[0, 0] * header_stokes["PHOTPLAM"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["PHOTPLAM"], 2, out=int)
|
header_stokes["PHOTPLAM"],
|
||||||
|
*sci_not(I_bkg[0, 0] * header_stokes["PHOTPLAM"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["PHOTPLAM"], 2, out=int),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0] * 10.0) / 10.0)))
|
||||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
if pxscale.lower() not in ['full', 'integrate'] and not interactive:
|
if pxscale.lower() not in ["full", "integrate"] and not interactive:
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
proj_plots.polarization_map(
|
||||||
step_vec=step_vec, scale_vec=scale_vec, savename="_".join([figname]), plots_folder=plots_folder, **options)
|
deepcopy(Stokes_hdul),
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
data_mask,
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "I"]), plots_folder=plots_folder, display='Intensity', **options)
|
SNRp_cut=SNRp_cut,
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
scale_vece=scale_vec, savename="_".join([figname, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux', **options)
|
flux_lim=flux_lim,
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
step_vec=step_vec,
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "P"]), plots_folder=plots_folder, display='Pol_deg', **options)
|
scale_vec=scale_vec,
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
savename="_".join([figname]),
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "PA"]), plots_folder=plots_folder, display='Pol_ang', **options)
|
plots_folder=plots_folder,
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
**options,
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "I_err"]), plots_folder=plots_folder, display='I_err', **options)
|
)
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
proj_plots.polarization_map(
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err', **options)
|
deepcopy(Stokes_hdul),
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
data_mask,
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "SNRi"]), plots_folder=plots_folder, display='SNRi', **options)
|
SNRp_cut=SNRp_cut,
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
SNRi_cut=SNRi_cut,
|
||||||
scale_vec=scale_vec, savename="_".join([figname, "SNRp"]), plots_folder=plots_folder, display='SNRp', **options)
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "I"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Intensity",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vece=scale_vec,
|
||||||
|
savename="_".join([figname, "P_flux"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_Flux",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "P"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "PA"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_ang",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "I_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="I_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "P_err"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="Pol_deg_err",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRi"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRi",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
proj_plots.polarization_map(
|
||||||
|
deepcopy(Stokes_hdul),
|
||||||
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
flux_lim=flux_lim,
|
||||||
|
step_vec=step_vec,
|
||||||
|
scale_vec=scale_vec,
|
||||||
|
savename="_".join([figname, "SNRp"]),
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="SNRp",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
elif not interactive:
|
elif not interactive:
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_hdul), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
|
proj_plots.polarization_map(
|
||||||
savename=figname, plots_folder=plots_folder, display='integrate', **options)
|
deepcopy(Stokes_hdul),
|
||||||
elif pxscale.lower() not in ['full', 'integrate']:
|
data_mask,
|
||||||
|
SNRp_cut=SNRp_cut,
|
||||||
|
SNRi_cut=SNRi_cut,
|
||||||
|
savename=figname,
|
||||||
|
plots_folder=plots_folder,
|
||||||
|
display="integrate",
|
||||||
|
**options,
|
||||||
|
)
|
||||||
|
elif pxscale.lower() not in ["full", "integrate"]:
|
||||||
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||||
|
|
||||||
|
|
||||||
return outfiles
|
return outfiles
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import argparse
|
import argparse
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Query MAST for target products')
|
parser = argparse.ArgumentParser(description="Query MAST for target products")
|
||||||
parser.add_argument('-t', '--target', metavar='targetname', required=False, help='the name of the target', type=str, default=None)
|
parser.add_argument("-t", "--target", metavar="targetname", required=False, help="the name of the target", type=str, default=None)
|
||||||
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False, help='the proposal id of the data products', type=int, default=None)
|
parser.add_argument("-p", "--proposal_id", metavar="proposal_id", required=False, help="the proposal id of the data products", type=int, default=None)
|
||||||
parser.add_argument('-d', '--data_dir', metavar='directory_path', required=False, help='directory path to the data products', type=str, default=None)
|
parser.add_argument("-f", "--files", metavar="path", required=False, nargs="*", help="the full or relative path to the data products", default=None)
|
||||||
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*', help='the full or relative path to the data products', default=None)
|
parser.add_argument(
|
||||||
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
|
"-o", "--output_dir", metavar="directory_path", required=False, help="output directory path for the data products", type=str, default="./data"
|
||||||
help='output directory path for the data products', type=str, default="./data")
|
)
|
||||||
parser.add_argument('-c', '--crop', action='store_true', required=False, help='whether to crop the analysis region')
|
parser.add_argument("-c", "--crop", action="store_true", required=False, help="whether to crop the analysis region")
|
||||||
parser.add_argument('-i', '--interactive', action='store_true', required=False, help='whether to output to the interactive analysis tool')
|
parser.add_argument("-i", "--interactive", action="store_true", required=False, help="whether to output to the interactive analysis tool")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
exitcode = main(target=args.target, proposal_id=args.proposal_id, data_dir=args.data_dir, infiles=args.files,
|
exitcode = main(
|
||||||
output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
|
target=args.target, proposal_id=args.proposal_id, infiles=args.files, output_dir=args.output_dir, crop=args.crop, interactive=args.interactive
|
||||||
print("Finished with ExitCode: ", exitcode)
|
)
|
||||||
|
print("Written to: ", exitcode)
|
||||||
|
|||||||
@@ -406,7 +406,7 @@ def polarization_map(
|
|||||||
plt.rcdefaults()
|
plt.rcdefaults()
|
||||||
ratiox = max(int(stkI.shape[1]/(stkI.shape[0])),1)
|
ratiox = max(int(stkI.shape[1]/(stkI.shape[0])),1)
|
||||||
ratioy = max(int((stkI.shape[0])/stkI.shape[1]),1)
|
ratioy = max(int((stkI.shape[0])/stkI.shape[1]),1)
|
||||||
fig, ax = plt.subplots(figsize=(6*ratiox, 6*ratioy), layout="compressed", subplot_kw=dict(projection=wcs))
|
fig, ax = plt.subplots(figsize=(7*ratiox, 7*ratioy), layout="compressed", subplot_kw=dict(projection=wcs))
|
||||||
ax.set(aspect="equal", fc="k", ylim=[-stkI.shape[0]*0.10,stkI.shape[0]*1.15])
|
ax.set(aspect="equal", fc="k", ylim=[-stkI.shape[0]*0.10,stkI.shape[0]*1.15])
|
||||||
# fig.subplots_adjust(hspace=0, wspace=0, left=0.102, right=1.02)
|
# fig.subplots_adjust(hspace=0, wspace=0, left=0.102, right=1.02)
|
||||||
|
|
||||||
@@ -531,8 +531,8 @@ def polarization_map(
|
|||||||
ax.transAxes,
|
ax.transAxes,
|
||||||
"E",
|
"E",
|
||||||
"N",
|
"N",
|
||||||
length=-0.05,
|
length=-0.07,
|
||||||
fontsize=0.02,
|
fontsize=0.03,
|
||||||
loc=1,
|
loc=1,
|
||||||
aspect_ratio=-(stkI.shape[1]/(stkI.shape[0]*1.25)),
|
aspect_ratio=-(stkI.shape[1]/(stkI.shape[0]*1.25)),
|
||||||
sep_y=0.01,
|
sep_y=0.01,
|
||||||
@@ -736,7 +736,7 @@ class align_maps(object):
|
|||||||
length=-0.08,
|
length=-0.08,
|
||||||
fontsize=0.03,
|
fontsize=0.03,
|
||||||
loc=1,
|
loc=1,
|
||||||
aspect_ratio=-(self.map_data.shape[1]/self.map_data.shape[0]),
|
aspect_ratio=-(self.map_ax.get_xbound()[1]-self.map_ax.get_xbound()[0])/(self.map_ax.get_ybound()[1]-self.map_ax.get_ybound()[0]),
|
||||||
sep_y=0.01,
|
sep_y=0.01,
|
||||||
sep_x=0.01,
|
sep_x=0.01,
|
||||||
angle=-self.map_header["orientat"],
|
angle=-self.map_header["orientat"],
|
||||||
@@ -788,13 +788,13 @@ class align_maps(object):
|
|||||||
)
|
)
|
||||||
if "ORIENTAT" in list(self.other_header.keys()):
|
if "ORIENTAT" in list(self.other_header.keys()):
|
||||||
north_dir2 = AnchoredDirectionArrows(
|
north_dir2 = AnchoredDirectionArrows(
|
||||||
self.map_ax.transAxes,
|
self.other_ax.transAxes,
|
||||||
"E",
|
"E",
|
||||||
"N",
|
"N",
|
||||||
length=-0.08,
|
length=-0.08,
|
||||||
fontsize=0.03,
|
fontsize=0.03,
|
||||||
loc=1,
|
loc=1,
|
||||||
aspect_ratio=-(self.other_data.shape[1]/self.other_data.shape[0]),
|
aspect_ratio=-(self.other_ax.get_xbound()[1]-self.other_ax.get_xbound()[0])/(self.other_ax.get_ybound()[1]-self.other_ax.get_ybound()[0]),
|
||||||
sep_y=0.01,
|
sep_y=0.01,
|
||||||
sep_x=0.01,
|
sep_x=0.01,
|
||||||
angle=-self.other_header["orientat"],
|
angle=-self.other_header["orientat"],
|
||||||
@@ -1338,7 +1338,9 @@ class overplot_pol(align_maps):
|
|||||||
pol[SNRi < SNRi_cut] = np.nan
|
pol[SNRi < SNRi_cut] = np.nan
|
||||||
|
|
||||||
plt.rcParams.update({"font.size": 16})
|
plt.rcParams.update({"font.size": 16})
|
||||||
self.fig_overplot, self.ax_overplot = plt.subplots(figsize=(11, 10), subplot_kw=dict(projection=self.other_wcs))
|
ratiox = max(int(stkI.shape[1]/stkI.shape[0]),1)
|
||||||
|
ratioy = max(int(stkI.shape[0]/stkI.shape[1]),1)
|
||||||
|
self.fig_overplot, self.ax_overplot = plt.subplots(figsize=(10*ratiox, 10*ratioy), subplot_kw=dict(projection=self.other_wcs))
|
||||||
self.fig_overplot.subplots_adjust(hspace=0, wspace=0, bottom=0.1, left=0.1, top=0.80, right=1.02)
|
self.fig_overplot.subplots_adjust(hspace=0, wspace=0, bottom=0.1, left=0.1, top=0.80, right=1.02)
|
||||||
|
|
||||||
self.ax_overplot.set_xlabel(label="Right Ascension (J2000)")
|
self.ax_overplot.set_xlabel(label="Right Ascension (J2000)")
|
||||||
@@ -1393,11 +1395,12 @@ class overplot_pol(align_maps):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Display full size polarization vectors
|
# Display full size polarization vectors
|
||||||
|
px_scale = self.wcs_UV.wcs.get_cdelt()[0]/self.other_wcs.wcs.get_cdelt()[0]
|
||||||
if scale_vec is None:
|
if scale_vec is None:
|
||||||
self.scale_vec = 2.0
|
self.scale_vec = 2.0*px_scale
|
||||||
pol[np.isfinite(pol)] = 1.0 / 2.0
|
pol[np.isfinite(pol)] = 1.0 / 2.0
|
||||||
else:
|
else:
|
||||||
self.scale_vec = scale_vec
|
self.scale_vec = scale_vec*px_scale
|
||||||
step_vec = 1
|
step_vec = 1
|
||||||
self.X, self.Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
self.X, self.Y = np.meshgrid(np.arange(stkI.shape[1]), np.arange(stkI.shape[0]))
|
||||||
self.U, self.V = pol * np.cos(np.pi / 2.0 + pang * np.pi / 180.0), pol * np.sin(np.pi / 2.0 + pang * np.pi / 180.0)
|
self.U, self.V = pol * np.cos(np.pi / 2.0 + pang * np.pi / 180.0), pol * np.sin(np.pi / 2.0 + pang * np.pi / 180.0)
|
||||||
@@ -1414,8 +1417,8 @@ class overplot_pol(align_maps):
|
|||||||
headwidth=0.0,
|
headwidth=0.0,
|
||||||
headlength=0.0,
|
headlength=0.0,
|
||||||
headaxislength=0.0,
|
headaxislength=0.0,
|
||||||
width=0.5,
|
width=0.5*px_scale,
|
||||||
linewidth=0.75,
|
linewidth=0.3*px_scale,
|
||||||
color="white",
|
color="white",
|
||||||
edgecolor="black",
|
edgecolor="black",
|
||||||
transform=self.ax_overplot.get_transform(self.wcs_UV),
|
transform=self.ax_overplot.get_transform(self.wcs_UV),
|
||||||
@@ -1454,7 +1457,7 @@ class overplot_pol(align_maps):
|
|||||||
length=-0.08,
|
length=-0.08,
|
||||||
fontsize=0.03,
|
fontsize=0.03,
|
||||||
loc=1,
|
loc=1,
|
||||||
aspect_ratio=-(stkI.shape[1]/stkI.shape[0]),
|
aspect_ratio=-(self.ax_overplot.get_xbound()[1]-self.ax_overplot.get_xbound()[0])/(self.ax_overplot.get_ybound()[1]-self.ax_overplot.get_ybound()[0]),
|
||||||
sep_y=0.01,
|
sep_y=0.01,
|
||||||
sep_x=0.01,
|
sep_x=0.01,
|
||||||
angle=-self.Stokes_UV[0].header["orientat"],
|
angle=-self.Stokes_UV[0].header["orientat"],
|
||||||
|
|||||||
@@ -217,9 +217,9 @@ def bin_ndarray(ndarray, new_shape, operation="sum"):
|
|||||||
elif operation.lower() in ["mean", "average", "avg"]:
|
elif operation.lower() in ["mean", "average", "avg"]:
|
||||||
ndarray = ndarray.mean(-1 * (i + 1))
|
ndarray = ndarray.mean(-1 * (i + 1))
|
||||||
else:
|
else:
|
||||||
row_comp = np.mat(get_row_compressor(ndarray.shape[0], new_shape[0], operation))
|
row_comp = np.asmatrix(get_row_compressor(ndarray.shape[0], new_shape[0], operation))
|
||||||
col_comp = np.mat(get_column_compressor(ndarray.shape[1], new_shape[1], operation))
|
col_comp = np.asmatrix(get_column_compressor(ndarray.shape[1], new_shape[1], operation))
|
||||||
ndarray = np.array(row_comp * np.mat(ndarray) * col_comp)
|
ndarray = np.array(row_comp * np.asmatrix(ndarray) * col_comp)
|
||||||
|
|
||||||
return ndarray
|
return ndarray
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user