add script to read/dump/plot fos spectropol

This commit is contained in:
2024-12-19 11:39:56 +01:00
parent 82168cd67f
commit b218279fef

419
package/src/readfos.py Executable file
View File

@@ -0,0 +1,419 @@
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import numpy as np
from astropy.io.fits import getheader, getdata, hdu
from os.path import join as join_path, exists as path_exists
from os import system
from copy import deepcopy
# consecutive spectra are made up of the summ of all previous ACCUMs, so the S/N increases along sequence
# _c0f.fits - calibrated vacuum wavelength
# _c1f.fits - calibrated fluxes (ergs sec^-1 cm^-2 Angs^-1)
# _c2f.fits - statistical errors (no sky, bkg subtraction, flatfield or sensitivity error)
# _c3f.fits - for SPECTROPOLARIMETRY mode contains I, Q, U, V, linear and circular polarization and polarization position angle
# _c4f.fits - object+sky count rate spectrum (corrected for overscanning, noise rejection, lost signal)
# _c5f.fits - flat-fielded object count rate spectrum (corrected for paired pulses, detector background, flatfield structure, GIM effects)
# _c6f.fits - flat-fielded sky count rate spectrum (corrected for paired pulses, detector background, flatfield structure, GIM effects)
# _c7f.fits - background count rate spectrum (scaled background subtracted from c4 products)
# _c8f.fits - flat-fielded and sky-subtracted object count rate spectrum
def princ_angle(ang):
"""
Return the principal angle in the 0° to 180° quadrant as PA is always
defined at p/m 180°.
----------
Inputs:
ang : float, numpy.ndarray
Angle in degrees. Can be an array of angles.
----------
Returns:
princ_ang : float, numpy.ndarray
Principal angle in the 0°-180° quadrant in the same shape as input.
"""
if not isinstance(ang, np.ndarray):
A = np.array([ang])
else:
A = np.array(ang)
while np.any(A < 0.0):
A[A < 0.0] = A[A < 0.0] + 360.0
while np.any(A >= 180.0):
A[A >= 180.0] = A[A >= 180.0] - 180.0
if type(ang) is type(A):
return A
else:
return A[0]
class specpol(object):
"""
Class object for studying spectropolarimetry.
"""
def __init__(self, other=None):
if isinstance(other, specpol):
# Copy constructor
self.wav = deepcopy(other.wav)
self.wav_err = deepcopy(other.wav_err)
self.I = deepcopy(other.I)
self.Q = deepcopy(other.Q)
self.U = deepcopy(other.U)
self.V = deepcopy(other.V)
self.IQU_cov = deepcopy(other.IQU_cov)
else:
# Initialise to zero
if isinstance(other, int):
self.zero(other)
else:
self.zero()
@classmethod
def zero(self, n=1):
"""
Set all values to zero.
"""
self.wav = np.zeros(n)
self.wav_err = np.zeros((n, 2))
self.I = np.zeros(n)
self.Q = np.zeros(n)
self.U = np.zeros(n)
self.V = np.zeros(n)
self.IQU_cov = np.zeros((4, 4, n))
@property
def I_err(self):
return np.sqrt(self.IQU_cov[0][0])
@property
def Q_err(self):
return np.sqrt(self.IQU_cov[1][1])
@property
def U_err(self):
return np.sqrt(self.IQU_cov[2][2])
@property
def V_err(self):
return np.sqrt(self.IQU_cov[3][3])
@property
def QN(self):
return self.Q / np.where(self.I > 0, self.I, np.nan)
@property
def QN_err(self):
return self.Q_err / np.where(self.I > 0, self.I, np.nan)
@property
def UN(self):
return self.U / np.where(self.I > 0, self.I, np.nan)
@property
def UN_err(self):
return self.U_err / np.where(self.I > 0, self.I, np.nan)
@property
def VN(self):
return self.V / np.where(self.I > 0, self.I, np.nan)
@property
def VN_err(self):
return self.V_err / np.where(self.I > 0, self.I, np.nan)
@property
def PF(self):
return np.sqrt(self.Q**2 + self.U**2 + self.V**2)
@property
def PF_err(self):
return np.sqrt(self.Q**2 * self.Q_err**2 + self.U**2 * self.U_err**2 + self.V**2 * self.V_err**2) / np.where(self.PF > 0, self.PF, np.nan)
@property
def P(self):
return self.PF / np.where(self.I > 0, self.I, np.nan)
@property
def P_err(self):
return np.sqrt(self.PF_err**2 + (self.PF / self.I) ** 2 * self.I_err**2) / np.where(self.I > 0, self.I, np.nan)
@property
def PA(self):
return princ_angle((90.0 / np.pi) * np.arctan2(self.U, self.Q))
@property
def PA_err(self):
return princ_angle((90.0 / np.pi) * np.sqrt(self.U**2 * self.Q_err**2 + self.Q**2 * self.U_err**2) / np.where(self.PF > 0, self.PF**2, np.nan))
def rotate(self, angle):
alpha = np.pi / 180.0 * angle
mrot = np.array(
[
[1.0, 0.0, 0.0, 0.0],
[0.0, np.cos(2.0 * alpha), np.sin(2.0 * alpha), 0.0],
[0.0, -np.sin(2.0 * alpha), np.cos(2.0 * alpha), 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
self.I, self.Q, self.U, self.V = np.dot(mrot, np.array([self.I, self.Q, self.U, self.V]))
self.IQU_cov = np.dot(mrot, np.dot(self.IQU_cov.T, mrot.T).T)
def bin_size(self, size):
"""
Rebin spectra to selected bin size in Angstrom.
"""
bin_edges = np.arange(np.floor(self.wav.min()), np.ceil(self.wav.max()), size)
in_bin = np.digitize(self.wav, bin_edges) - 1
spec_b = specpol(bin_edges.shape[0] - 1)
for i in range(bin_edges.shape[0] - 1):
spec_b.wav[i] = np.mean(self.wav[in_bin == i])
spec_b.wav_err[i] = (spec_b.wav[i] - bin_edges[i], bin_edges[i + 1] - spec_b.wav[i])
spec_b.I[i] = np.sum(self.I[in_bin == i])
spec_b.Q[i] = np.sum(self.Q[in_bin == i])
spec_b.U[i] = np.sum(self.U[in_bin == i])
spec_b.V[i] = np.sum(self.V[in_bin == i])
for m in range(4):
spec_b.IQU_cov[m][m][i] = np.sum(self.IQU_cov[m][m][in_bin == i])
for n in [k for k in range(4) if k != m]:
spec_b.IQU_cov[m][n][i] = np.sqrt(np.sum(self.IQU_cov[m][n][in_bin == i] ** 2))
return spec_b
def dump_txt(self, filename, output_dir=""):
"""
Dump current spectra to a text file.
"""
data_dump = np.array([self.wav, self.I, self.Q, self.U, self.V, self.P, self.PA]).T
np.savetxt(join_path(output_dir, filename + ".txt"), data_dump)
return join_path(output_dir, filename)
def plot(self, fig=None, ax=None, savename=None, plots_folder=""):
"""
Display current spectra.
"""
if fig is None:
if ax is None:
self.fig, self.ax = plt.subplots(1, 2, sharex=True, figsize=(20, 5), layout="constrained")
else:
self.ax = ax
else:
if ax is None:
self.fig = fig
self.ax = self.fig.add_subplot(111)
else:
self.fig = fig
self.ax = ax
self.ax[0].set_xlabel(r"Wavelength [$\AA$]")
self.ax[1].set_xlabel(r"Wavelength [$\AA$]")
self.ax[0].errorbar(self.wav, self.I, xerr=self.wav_err.T, yerr=self.I_err, color="k", fmt=".", label="I")
self.ax[0].errorbar(self.wav, self.PF, xerr=self.wav_err.T, yerr=self.PF_err, color="b", fmt=".", label="PF")
self.ax[0].set_ylabel(r"F$_\lambda$ [erg s$^{-1}$ cm$^{-2} \AA^{-1}$]")
self.ax[0].legend()
# ax1 = self.ax[0].twinx()
# ax1.errorbar(self.wav, self.QN, xerr=self.wav_err.T, yerr=self.QN_err, fmt=".", label="QN")
# ax1.errorbar(self.wav, self.UN, xerr=self.wav_err.T, yerr=self.UN_err, fmt=".", label="UN")
# ax1.errorbar(self.wav, self.VN, xerr=self.wav_err.T, yerr=self.VN_err, fmt=".", label="VN")
# ax1.set_ylim([-1.0, 1.0])
# ax1.set_ylabel(r"Normalised stokes flux", color="g")
# ax1.tick_params(axis="y", color="g", labelcolor="g")
# h0, l0 = self.ax[0].get_legend_handles_labels()
# h1, l1 = ax1.get_legend_handles_labels()
# self.ax[0].legend(h0 + h1, l0 + l1, ncols=5)
self.ax[1].errorbar(self.wav, self.P, xerr=self.wav_err.T, yerr=self.P_err, color="b", fmt=".", label="P")
self.ax[1].set_ylim([0.0, 1.0])
self.ax[1].set_ylabel(r"P", color="b")
self.ax[1].tick_params(axis="y", color="b", labelcolor="b")
ax2 = self.ax[1].twinx()
ax2.errorbar(self.wav, self.PA, xerr=self.wav_err.T, yerr=self.PA_err, color="r", fmt=".", label="PA [°]")
ax2.set_ylim([0.0, 180.0])
ax2.set_ylabel(r"PA", color="r")
ax2.tick_params(axis="y", color="r", labelcolor="r")
if hasattr(self, "fig") and savename is not None:
self.fig.savefig(join_path(plots_folder, savename + ".pdf"), dpi=300, bbox_inches="tight")
return self.fig, self.ax, join_path(plots_folder, savename + ".pdf")
elif hasattr(self, "fig"):
return self.fig, self.ax
else:
return self.ax
class FOSspecpol(specpol):
"""
Class object for studying FOS SPECTROPOLARYMETRY mode spectra.
"""
def __init__(self, stokes, data_folder=""):
"""
Initialise object from fits filename or hdulist.
"""
if isinstance(stokes, str):
self.file_root = stokes.split("_")[0]
self.hd = getheader(join_path(data_folder, self.file_root + "_c0f.fits"))
wav = getdata(join_path(data_folder, self.file_root + "_c0f.fits"))
stokes = getdata(join_path(data_folder, self.file_root + "_c3f.fits"))
elif isinstance(stokes, hdu.hdulist.HDUList):
self.hd = stokes.header
self.file_root = self.hd["FILENAME"].split("_")[0]
wav = getdata(join_path(data_folder, self.file_root + "_c0f"))
stokes = stokes.data
else:
raise ValueError("Input must be a path to a fits file or an HDUlist")
self.wav = np.concat((wav[0:2, :], wav[0].reshape(1, wav.shape[1]), wav[0].reshape(1, wav.shape[1])), axis=0)
self.wav_err = np.zeros((self.wav.shape[0], self.wav.shape[1], 2))
self.IQU_cov = np.zeros((4, 4, self.wav.shape[0], self.wav.shape[1]))
self.I = stokes[0::14]
self.IQU_cov[0, 0] = stokes[4::14] ** 2
self.Q = stokes[1::14]
self.IQU_cov[1, 1] = stokes[5::14] ** 2
self.U = stokes[2::14]
self.IQU_cov[2, 2] = stokes[6::14] ** 2
self.V = stokes[3::14]
self.IQU_cov[3, 3] = stokes[7::14] ** 2
self.subspec = {}
for i, name in enumerate(["PASS1", "PASS2", "PASS12", "PASS12corr"]):
spec = specpol(self.wav[i].shape[0])
spec.wav, spec.wav_err, spec.I, spec.Q, spec.U, spec.V = self.wav[i], self.wav_err[i], self.I[i], self.Q[i], self.U[i], self.V[i]
spec.IQU_cov = self.IQU_cov[:, :, i, :]
spec.rotate((i != 3) * self.hd["PA_APER"])
self.subspec[name] = spec
self.P_fos = stokes[8::14]
self.P_fos_err = stokes[11::14]
self.PC_fos = stokes[9::14]
self.PC_fos_err = stokes[12::14]
self.PA_fos = princ_angle(
np.degrees(stokes[10::14]) + np.concat((np.ones((3, stokes.shape[1])), np.zeros((1, stokes.shape[1]))), axis=0) * self.hd["PA_APER"]
)
self.PA_fos_err = princ_angle(np.degrees(stokes[13::14]))
def __del__(self):
if hasattr(self, "ax"):
del self.ax
if hasattr(self, "fig"):
del self.fig
def dump_txt(self, filename, output_dir=""):
"""
Dump current spectra to a text file.
"""
outfiles = []
for i in range(min(self.wav.shape[0], 4)):
data_dump = np.array([self.wav[i], self.I[i], self.Q[i], self.U[i], self.V[i], self.P[i], self.PA[i]]).T
np.savetxt(join_path(output_dir, filename + "_%d.txt" % i), data_dump)
outfiles.append(join_path(output_dir, filename + "_%d" % i))
return outfiles
def plot(self, savename=None, plots_folder=""):
"""
Display current spectra in single figure.
"""
outfiles = []
if hasattr(self, "ax"):
del self.ax
if hasattr(self, "fig"):
del self.fig
self.fig, self.ax = plt.subplots(min(self.wav.shape[0], 4), 2, sharex=True, figsize=(20, 10), layout="constrained")
self.ax[-1][0].set_xlabel(r"Wavelength [$\AA$]", size="large")
self.ax[-1][1].set_xlabel(r"Wavelength [$\AA$]", size="large")
for i, name in enumerate(["Pass Direction 1", "Pass Direction 2", "Pass Direction 1&2", "Pass Direction 1&2 corrected"]):
self.ax[i][0].set_title(name)
self.ax[i][0].errorbar(self.wav[i], self.I[i], xerr=self.wav_err[i].T, yerr=self.I_err[i], color="k", fmt=".", label="I")
self.ax[i][0].errorbar(
self.wav[i],
self.P_fos[i] * self.I[i],
xerr=self.wav_err[i].T,
yerr=(self.P_fos_err[i] * self.I[i] + self.P_fos_err[i] * self.I_err[i]),
color="b",
fmt=".",
label="PF_fos",
)
self.ax[i][0].set_ylabel(r"F$_\lambda$ [erg s$^{-1}$ cm$^{-2} \AA^{-1}$]")
# ax1 = self.ax[i][0].twinx()
# ax1.errorbar(self.wav[i], self.QN[i], xerr=self.wav_err[i].T, yerr=self.QN_err[i], fmt=".", label="QN")
# ax1.errorbar(self.wav[i], self.UN[i], xerr=self.wav_err[i].T, yerr=self.UN_err[i], fmt=".", label="UN")
# ax1.errorbar(self.wav[i], self.VN[i], xerr=self.wav_err[i].T, yerr=self.VN_err[i], fmt=".", label="VN")
# ax1.set_ylabel(r"Normalised stokes flux", color="g")
# ax1.tick_params(axis="y", color="g", labelcolor="g")
# ax1.set_ylim([-1.0, 1.0])
# h0, l0 = self.ax[i][0].get_legend_handles_labels()
# h1, l1 = ax1.get_legend_handles_labels()
# self.ax[i][0].legend(h0 + h1, l0 + l1, ncols=5)
self.ax[i][0].legend()
self.ax[i][1].errorbar(self.wav[i], self.P_fos[i], xerr=self.wav_err[i].T, yerr=self.P_fos_err[i], color="b", fmt=".", label="P_fos")
self.ax[i][1].set(ylabel=r"P_fos", ylim=[0.0, 1.0])
ax2 = self.ax[i][1].twinx()
ax2.errorbar(self.wav[i], self.PA_fos[i], xerr=self.wav_err[i].T, yerr=self.PA_fos_err[i], color="r", fmt=".", label="P_fos")
ax2.set_ylabel(r"PA_fos", color="r")
ax2.tick_params(axis="y", color="r", labelcolor="r")
ax2.set_ylim([0.0, 180.0])
self.fig.suptitle("_".join([self.hd["TARGNAME"], str(self.hd["PROPOSID"]), self.hd["FILENAME"], self.hd["APER_ID"]]))
if savename is not None:
self.fig.savefig(join_path(plots_folder, savename + ".pdf"), dpi=300, bbox_inches="tight")
outfiles.append(join_path(plots_folder, savename + ".pdf"))
return outfiles
def bin_size(self, size):
"""
Rebin spectra to selected bin size in Angstrom.
"""
self.bin_edges = np.arange(np.floor(self.wav_fos.min()), np.ceil(self.wav_fos.max()), size)
self.in_bin = np.zeros(self.wav_fos.shape)
for i in range(self.wav_fos.shape[0]):
self.in_bin[i] = np.digitize(self.wav_fos[i], self.bin_edges) - 1
def main(infiles, output_dir=None):
outfiles = []
if infiles is not None:
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
obs_dir = "/".join(infiles[0].split("/")[:-1])
if not path_exists(obs_dir):
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
else:
print("Must input files to process.")
return 1
data_folder = prod[0][0]
if output_dir is None:
output_dir = data_folder
try:
plots_folder = data_folder.replace("data", "plots")
except ValueError:
plots_folder = "."
if not path_exists(plots_folder):
system("mkdir -p {0:s} ".format(plots_folder))
infiles = [p[1] for p in prod]
roots = np.unique([file.split("_")[0] for file in infiles])
for file_root in roots:
print(file_root)
spec = FOSspecpol(file_root, data_folder)
filename = "_".join([spec.hd["TARGNAME"], "FOS", str(spec.hd["PROPOSID"]), spec.file_root, spec.hd["APER_ID"]])
outfiles += spec.dump_txt(filename, output_dir)
outfiles += spec.plot(filename, plots_folder)
del spec
plt.show()
return outfiles
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Display and dump FOS Spectropolarimetry")
parser.add_argument("-f", "--files", metavar="path", required=False, nargs="*", help="the full or relative path to the data products", default=None)
parser.add_argument(
"-o", "--output_dir", metavar="directory_path", required=False, help="output directory path for the data products", type=str, default=None
)
args = parser.parse_args()
exitcode = main(infiles=args.files, output_dir=args.output_dir)
print("Written to: ", exitcode)