finish Combine.py

This commit is contained in:
2024-07-04 17:08:28 +02:00
parent cb62d15cb2
commit a6edf1c1b9
5 changed files with 134 additions and 29 deletions

View File

@@ -10,8 +10,9 @@ def same_reduction(infiles):
Test if infiles are pipeline productions with same parameters.
"""
from astropy.io.fits import open as fits_open
from astropy.wcs import WCS
params = {"IQU": [], "TARGNAME": [], "BKG_SUB": [], "SAMPLING": [], "SMOOTHING": []}
params = {"IQU": [], "ROT": [], "SIZE": [], "TARGNAME": [], "BKG_SUB": [], "SAMPLING": [], "SMOOTH": []}
for file in infiles:
with fits_open(file) as f:
# test for presence of I, Q, U images
@@ -25,15 +26,28 @@ def same_reduction(infiles):
for look in ["I_stokes", "Q_stokes", "U_stokes", "IQU_cov_matrix"]:
test_IQU *= look in datatype
params["IQU"].append(test_IQU)
# test for orientation and pixel size
wcs = WCS(f[0].header).celestial
if wcs.wcs.has_cd() or (wcs.wcs.cdelt[:2] == np.array([1.0, 1.0])).all():
cdelt = np.linalg.eig(wcs.wcs.cd)[0]
pc = np.dot(wcs.wcs.cd, np.diag(1.0 / cdelt))
else:
cdelt = wcs.wcs.cdelt
pc = wcs.wcs.pc
params["ROT"].append(np.round(np.arccos(pc[0, 0]), 2) if np.abs(pc[0, 0]) < 1.0 else 0.0)
params["SIZE"].append(np.round(np.max(np.abs(cdelt * 3600.0)), 2))
# look for information on reduction procedure
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
for key in [k for k in params.keys() if k not in ["IQU", "ROT", "SIZE"]]:
try:
params[key].append(f[0].header[key])
except KeyError:
params[key].append("null")
result = np.all(params["IQU"])
for key in ["TARGNAME", "BKG_SUB", "SAMPLING", "SMOOTHING"]:
for key in [k for k in params.keys() if k != "IQU"]:
result *= np.unique(params[key]).size == 1
if np.all(params["IQU"]) and not result:
print(np.unique(params["SIZE"]))
raise ValueError("Not all observations were reduced with the same parameters, please provide the raw files.")
return result
@@ -48,11 +62,11 @@ def same_obs(infiles, data_folder):
from astropy.table import Table
from astropy.time import Time, TimeDelta
headers = [getheader("/".join([data_folder,file])) for file in infiles]
headers = [getheader("/".join([data_folder, file])) for file in infiles]
files = {}
files["PROPOSID"] = np.array([str(head["PROPOSID"]) for head in headers],dtype=str)
files["ROOTNAME"] = np.array([head["ROOTNAME"].lower()+"_c0f.fits" for head in headers],dtype=str)
files["EXPSTART"] = np.array([Time(head["EXPSTART"],format='mjd') for head in headers])
files["PROPOSID"] = np.array([str(head["PROPOSID"]) for head in headers], dtype=str)
files["ROOTNAME"] = np.array([head["ROOTNAME"].lower() + "_c0f.fits" for head in headers], dtype=str)
files["EXPSTART"] = np.array([Time(head["EXPSTART"], format="mjd") for head in headers])
products = Table(files)
new_infiles = []
@@ -73,22 +87,89 @@ def combine_Stokes(infiles):
"""
Combine I, Q, U from different observations of a same object.
"""
print("not implemented yet")
from astropy.io.fits import open as fits_open
from lib.reduction import align_data, zeropad
from scipy.ndimage import shift as sc_shift
return infiles
I_array, Q_array, U_array, IQU_cov_array, data_mask, headers = [], [], [], [], [], []
shape = np.array([0, 0])
for file in infiles:
with fits_open(file) as f:
headers.append(f[0].header)
I_array.append(f["I_stokes"].data)
Q_array.append(f["Q_stokes"].data)
U_array.append(f["U_stokes"].data)
IQU_cov_array.append(f["IQU_cov_matrix"].data)
data_mask.append(f["data_mask"].data.astype(bool))
shape[0] = np.max([shape[0], f["I_stokes"].data.shape[0]])
shape[1] = np.max([shape[1], f["I_stokes"].data.shape[1]])
exposure_array = np.array([float(head["EXPTIME"]) for head in headers])
shape += np.array([5, 5])
data_mask = np.sum([zeropad(mask, shape) for mask in data_mask], axis=0).astype(bool)
I_array = np.array([zeropad(I, shape) for I in I_array])
Q_array = np.array([zeropad(Q, shape) for Q in Q_array])
U_array = np.array([zeropad(U, shape) for U in U_array])
IQU_cov_array = np.array([[[zeropad(cov[i, j], shape) for j in range(3)] for i in range(3)] for cov in IQU_cov_array])
sI_array = np.sqrt(IQU_cov_array[:, 0, 0])
sQ_array = np.sqrt(IQU_cov_array[:, 1, 1])
sU_array = np.sqrt(IQU_cov_array[:, 2, 2])
_, _, _, _, shifts, errors = align_data(I_array, headers, error_array=sI_array, data_mask=data_mask, ref_center="center", return_shifts=True)
data_mask_aligned = np.sum([sc_shift(data_mask, s, order=1, cval=0.0) for s in shifts], axis=0).astype(bool)
I_aligned, sI_aligned = (
np.array([sc_shift(I, s, order=1, cval=0.0) for I, s in zip(I_array, shifts)]),
np.array([sc_shift(sI, s, order=1, cval=0.0) for sI, s in zip(sI_array, shifts)]),
)
Q_aligned, sQ_aligned = (
np.array([sc_shift(Q, s, order=1, cval=0.0) for Q, s in zip(Q_array, shifts)]),
np.array([sc_shift(sQ, s, order=1, cval=0.0) for sQ, s in zip(sQ_array, shifts)]),
)
U_aligned, sU_aligned = (
np.array([sc_shift(U, s, order=1, cval=0.0) for U, s in zip(U_array, shifts)]),
np.array([sc_shift(sU, s, order=1, cval=0.0) for sU, s in zip(sU_array, shifts)]),
)
IQU_cov_aligned = np.array([[[sc_shift(cov[i, j], s, order=1, cval=0.0) for j in range(3)] for i in range(3)] for cov, s in zip(IQU_cov_array, shifts)])
I_combined = np.sum([exp * I for exp, I in zip(exposure_array, I_aligned)], axis=0) / exposure_array.sum()
Q_combined = np.sum([exp * Q for exp, Q in zip(exposure_array, Q_aligned)], axis=0) / exposure_array.sum()
U_combined = np.sum([exp * U for exp, U in zip(exposure_array, U_aligned)], axis=0) / exposure_array.sum()
IQU_cov_combined = np.zeros((3, 3, shape[0], shape[1]))
for i in range(3):
IQU_cov_combined[i, i] = np.sum([exp**2 * cov for exp, cov in zip(exposure_array, IQU_cov_aligned[:, i, i])], axis=0) / exposure_array.sum() ** 2
for j in [x for x in range(3) if x != i]:
IQU_cov_combined[i, j] = np.sqrt(
np.sum([exp**2 * cov**2 for exp, cov in zip(exposure_array, IQU_cov_aligned[:, i, j])], axis=0) / exposure_array.sum() ** 2
)
IQU_cov_combined[j, i] = np.sqrt(
np.sum([exp**2 * cov**2 for exp, cov in zip(exposure_array, IQU_cov_aligned[:, j, i])], axis=0) / exposure_array.sum() ** 2
)
header_combined = headers[0]
header_combined["EXPTIME"] = exposure_array.sum()
return I_combined, Q_combined, U_combined, IQU_cov_combined, data_mask_aligned, header_combined
def main(infiles, target=None, output_dir="./data/"):
""" """
from lib.fits import save_Stokes
from lib.reduction import compute_pol
from lib.plots import pol_map
if target is None:
target = input("Target name:\n>")
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
data_folder = prod[0][0]
files = [p[1] for p in prod]
if not same_reduction(infiles):
print("NOT SAME REDUC")
from FOC_reduction import main as FOC_reduction
prod = np.array([["/".join(filepath.split("/")[:-1]), filepath.split("/")[-1]] for filepath in infiles], dtype=str)
data_folder = prod[0][0]
infiles = [p[1] for p in prod]
# Reduction parameters
kwargs = {}
# Background estimation
@@ -112,20 +193,44 @@ def main(infiles, target=None, output_dir="./data/"):
kwargs["step_vec"] = (
1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
)
grouped_infiles = same_obs(infiles, data_folder)
print(grouped_infiles)
grouped_infiles = same_obs(files, data_folder)
new_infiles = []
for i,group in enumerate(grouped_infiles):
new_infiles.append(FOC_reduction(target=target+"-"+str(i+1), infiles=["/".join([data_folder,file]) for file in group], interactive=True, **kwargs))
for i, group in enumerate(grouped_infiles):
new_infiles.append(
FOC_reduction(target=target + "-" + str(i + 1), infiles=["/".join([data_folder, file]) for file in group], interactive=True, **kwargs)
)
combined_Stokes = combine_Stokes(new_infiles)
infiles = new_infiles
else:
print("SAME REDUC")
combined_Stokes = combine_Stokes(infiles)
I_combined, Q_combined, U_combined, IQU_cov_combined, data_mask_combined, header_combined = combine_Stokes(infiles)
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = compute_pol(
I_stokes=I_combined, Q_stokes=Q_combined, U_stokes=U_combined, Stokes_cov=IQU_cov_combined, header_stokes=header_combined
)
filename = header_combined["FILENAME"]
figname = "_".join([target, filename[filename.find("FOC_"):], "combined"])
Stokes_combined = save_Stokes(
I_stokes=I_combined,
Q_stokes=Q_combined,
U_stokes=U_combined,
Stokes_cov=IQU_cov_combined,
P=P,
debiased_P=debiased_P,
s_P=s_P,
s_P_P=s_P_P,
PA=PA,
s_PA=s_PA,
s_PA_P=s_PA_P,
header_stokes=header_combined,
data_mask=data_mask_combined,
filename=figname,
data_folder=data_folder,
return_hdul=True,
)
return combined_Stokes
pol_map(Stokes_combined)
return "/".join([data_folder, figname+".fits"])
if __name__ == "__main__":

View File

@@ -63,8 +63,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# Polarization map output
SNRp_cut = 3.0 # P measurments with SNR>3
SNRi_cut = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
flux_lim = 1e-19, 3e-17 # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
scale_vec = 5
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
scale_vec = 3
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
# Pipeline start
@@ -421,7 +421,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
elif pxscale.lower() not in ["full", "integrate"]:
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
outfiles.append(Stokes_hdul[0].header["FILENAME"])
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"]+".fits"]))
return outfiles

View File

@@ -144,7 +144,7 @@ def save_Stokes(
header["INSTRUME"] = (header_stokes["instrume"] if "INSTRUME" in list(header_stokes.keys()) else "FOC", "identifier for instrument used to acuire data")
header["PHOTPLAM"] = (header_stokes["photplam"], "Pivot Wavelength")
header["PHOTFLAM"] = (header_stokes["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
header["EXPTOT"] = (exp_tot, "Total exposure time in sec")
header["EXPTIME"] = (exp_tot, "Total exposure time in sec")
header["PROPOSID"] = (header_stokes["proposid"], "PEP proposal identifier for observation")
header["TARGNAME"] = (header_stokes["targname"], "Target name")
header["ORIENTAT"] = (np.arccos(new_wcs.wcs.pc[0, 0]) * 180.0 / np.pi, "Angle between North and the y-axis of the image")

View File

@@ -3225,7 +3225,7 @@ if __name__ == "__main__":
"-sc", "--scale-vec", metavar="scale_vec", required=False, help="Size of the 100% polarization vector in pixel units", type=float, default=3.0
)
parser.add_argument("-pa", "--pang-err", action="store_true", required=False, help="Whether the polarization angle uncertainties should be displayed")
parser.add_argument("-l", "--lim", metavar="flux_lim", nargs=2, required=False, help="Limits for the intensity map", default=None)
parser.add_argument("-l", "--lim", metavar="flux_lim", nargs=2, required=False, help="Limits for the intensity map", type=float, default=None)
parser.add_argument("-pdf", "--static-pdf", metavar="static_pdf", required=False, help="Whether the analysis tool or the static pdfs should be outputed", default=None)
args = parser.parse_args()

View File

@@ -797,8 +797,8 @@ def align_data(data_array, headers, error_array=None, data_mask=None, background
if do_shift:
shift, error, _ = phase_cross_correlation(ref_data / ref_data.max(), image / image.max(), upsample_factor=upsample_factor)
else:
shift = globals["pol_shift"][headers[i]["filtnam1"].lower()]
error = globals["sigma_shift"][headers[i]["filtnam1"].lower()]
shift = globals()["pol_shift"][headers[i]["filtnam1"].lower()]
error = globals()["sigma_shift"][headers[i]["filtnam1"].lower()]
# Rescale image to requested output
rescaled_image[i, res_shift[0] : res_shift[0] + shape[1], res_shift[1] : res_shift[1] + shape[2]] = deepcopy(image)
rescaled_error[i, res_shift[0] : res_shift[0] + shape[1], res_shift[1] : res_shift[1] + shape[2]] = deepcopy(error_array[i])