modify files to comply with pep8 format
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# !/usr/bin/python3
|
||||
#!/usr/bin/python3
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
Main script where are progressively added the steps for the FOC pipeline reduction.
|
||||
@@ -15,8 +15,8 @@ from matplotlib.colors import LogNorm
|
||||
|
||||
|
||||
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=0, interactive=0):
|
||||
## Reduction parameters
|
||||
# Deconvolution
|
||||
# Reduction parameters
|
||||
# Deconvolution
|
||||
deconvolve = False
|
||||
if deconvolve:
|
||||
# from lib.deconvolve import from_file_psf
|
||||
@@ -28,38 +28,38 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
iterations = 5
|
||||
algo = "richardson"
|
||||
|
||||
# Initial crop
|
||||
# Initial crop
|
||||
display_crop = False
|
||||
|
||||
# Background estimation
|
||||
# Background estimation
|
||||
error_sub_type = 'freedman-diaconis' # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||
subtract_error = 1.00
|
||||
display_error = False
|
||||
|
||||
# Data binning
|
||||
# Data binning
|
||||
rebin = True
|
||||
pxsize = 0.10
|
||||
px_scale = 'arcsec' # pixel, arcsec or full
|
||||
rebin_operation = 'sum' # sum or average
|
||||
|
||||
# Alignement
|
||||
# Alignement
|
||||
align_center = 'center' # If None will not align the images
|
||||
display_bkg = False
|
||||
display_align = False
|
||||
display_data = False
|
||||
|
||||
# Smoothing
|
||||
# Smoothing
|
||||
smoothing_function = 'combine' # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
smoothing_FWHM = 0.10 # If None, no smoothing is done
|
||||
smoothing_scale = 'arcsec' # pixel or arcsec
|
||||
|
||||
# Rotation
|
||||
# Rotation
|
||||
rotate_data = False # rotation to North convention can give erroneous results
|
||||
rotate_stokes = True
|
||||
|
||||
# Final crop
|
||||
# crop = False #Crop to desired ROI
|
||||
# interactive = False #Whether to output to intercative analysis tool
|
||||
# Final crop
|
||||
crop = False # Crop to desired ROI
|
||||
interactive = False # Whether to output to intercative analysis tool
|
||||
|
||||
# Polarization map output
|
||||
SNRp_cut = 3. # P measurments with SNR>3
|
||||
@@ -68,10 +68,10 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
vec_scale = 3
|
||||
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||
|
||||
##### Pipeline start
|
||||
## Step 1:
|
||||
# Pipeline start
|
||||
# Step 1:
|
||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||
if not infiles is None:
|
||||
if infiles is not None:
|
||||
prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str)
|
||||
obs_dir = "/".join(infiles[0].split("/")[:-1])
|
||||
if not path_exists(obs_dir):
|
||||
@@ -100,12 +100,14 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
else:
|
||||
figtype = "full"
|
||||
if smoothing_FWHM is not None:
|
||||
figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]), "{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations
|
||||
figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]),
|
||||
"{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations
|
||||
if align_center is None:
|
||||
figtype += "_not_aligned"
|
||||
|
||||
# Crop data to remove outside blank margins.
|
||||
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
|
||||
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0.,
|
||||
inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
|
||||
|
||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||
if deconvolve:
|
||||
@@ -119,16 +121,16 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "bkg"]), plots_folder=plots_folder)
|
||||
|
||||
# Align and rescale images with oversampling.
|
||||
data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False)
|
||||
data_array, error_array, headers, data_mask = proj_red.align_data( data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False)
|
||||
|
||||
if display_align:
|
||||
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, str(align_center)]), plots_folder=plots_folder)
|
||||
|
||||
# Rebin data to desired pixel size.
|
||||
if rebin:
|
||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
|
||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array( data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
|
||||
|
||||
# Rotate data to have North up
|
||||
# Rotate data to have North up
|
||||
if rotate_data:
|
||||
data_mask = np.ones(data_array.shape[1:]).astype(bool)
|
||||
alpha = headers[0]['orientat']
|
||||
@@ -139,34 +141,34 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "rebin"]), plots_folder=plots_folder)
|
||||
|
||||
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
|
||||
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1']==head['filtnam1'] for h in headers], dtype=bool)].mean())**2/np.sum([h['filtnam1']==head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
|
||||
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1'] == head['filtnam1'] for h in headers], dtype=bool)].mean()) ** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
|
||||
|
||||
## Step 2:
|
||||
# Compute Stokes I, Q, U with smoothed polarized images
|
||||
# SMOOTHING DISCUSSION :
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
# Step 2:
|
||||
# Compute Stokes I, Q, U with smoothed polarized images
|
||||
# SMOOTHING DISCUSSION :
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
|
||||
|
||||
## Step 3:
|
||||
# Rotate images to have North up
|
||||
# Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate_stokes:
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
|
||||
|
||||
# Compute polarimetric parameters (polarisation degree and angle).
|
||||
# Compute polarimetric parameters (polarisation degree and angle).
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
|
||||
|
||||
## Step 4:
|
||||
# Save image to FITS.
|
||||
# Step 4:
|
||||
# Save image to FITS.
|
||||
Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, "_".join([figname, figtype]), data_folder=data_folder, return_hdul=True)
|
||||
data_mask = Stokes_test[-1].data.astype(bool)
|
||||
|
||||
## Step 5:
|
||||
# crop to desired region of interest (roi)
|
||||
# Step 5:
|
||||
# crop to desired region of interest (roi)
|
||||
if crop:
|
||||
figtype += "_crop"
|
||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test), norm=LogNorm())
|
||||
@@ -183,19 +185,29 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(PA_bkg[0, 0], np.ceil(s_PA_bkg[0, 0]*10.)/10.))
|
||||
# Plot polarisation map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||
if px_scale.lower() not in ['full', 'integrate'] and not interactive:
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype]), plots_folder=plots_folder)
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I"]), plots_folder=plots_folder, display='Intensity')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P"]), plots_folder=plots_folder, display='Pol_deg')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "PA"]), plots_folder=plots_folder, display='Pol_ang')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I_err"]), plots_folder=plots_folder, display='I_err')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRi"]), plots_folder=plots_folder, display='SNRi')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRp"]), plots_folder=plots_folder, display='SNRp')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
|
||||
step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype]), plots_folder=plots_folder)
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "I"]), plots_folder=plots_folder, display='Intensity')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "P"]), plots_folder=plots_folder, display='Pol_deg')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "PA"]), plots_folder=plots_folder, display='Pol_ang')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "I_err"]), plots_folder=plots_folder, display='I_err')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRi"]), plots_folder=plots_folder, display='SNRi')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
|
||||
vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRp"]), plots_folder=plots_folder, display='SNRp')
|
||||
elif not interactive:
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename="_".join([figname, figtype]), plots_folder=plots_folder, display='integrate')
|
||||
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
|
||||
savename="_".join([figname, figtype]), plots_folder=plots_folder, display='integrate')
|
||||
elif px_scale.lower() not in ['full', 'integrate']:
|
||||
pol_map = proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
|
||||
return 0
|
||||
|
||||
@@ -204,18 +216,15 @@ if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='Query MAST for target products')
|
||||
parser.add_argument('-t', '--target', metavar='targetname', required=False,
|
||||
help='the name of the target', type=str, default=None)
|
||||
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False,
|
||||
help='the proposal id of the data products', type=int, default=None)
|
||||
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*',
|
||||
help='the full or relative path to the data products', default=None)
|
||||
parser.add_argument('-t', '--target', metavar='targetname', required=False, help='the name of the target', type=str, default=None)
|
||||
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False, help='the proposal id of the data products', type=int, default=None)
|
||||
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*', help='the full or relative path to the data products', default=None)
|
||||
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
|
||||
help='output directory path for the data products', type=str, default="./data")
|
||||
parser.add_argument('-c', '--crop', metavar='crop_boolean', required=False,
|
||||
help='whether to crop the analysis region', type=int, default=0)
|
||||
parser.add_argument('-c', '--crop', metavar='crop_boolean', required=False, help='whether to crop the analysis region', type=int, default=0)
|
||||
parser.add_argument('-i', '--interactive', metavar='interactive_boolean', required=False,
|
||||
help='whether to output to the interactive analysis tool', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files, output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
|
||||
exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files,
|
||||
output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
|
||||
print("Finished with ExitCode: ", exitcode)
|
||||
|
||||
@@ -4,7 +4,7 @@ from sys import argv
|
||||
|
||||
arglist = argv[1:]
|
||||
options = "hf:p:i:l:"
|
||||
long_options = ["help","fits=","snrp=","snri=","lim="]
|
||||
long_options = ["help", "fits=", "snrp=", "snri=", "lim="]
|
||||
|
||||
fits_path = None
|
||||
SNRp_cut, SNRi_cut = 3, 30
|
||||
@@ -28,12 +28,12 @@ try:
|
||||
except get_error as err:
|
||||
print(str(err))
|
||||
|
||||
if not fits_path is None:
|
||||
if fits_path is not None:
|
||||
from astropy.io import fits
|
||||
from lib.plots import pol_map
|
||||
|
||||
Stokes_UV = fits.open(fits_path)
|
||||
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,flux_lim=flux_lim)
|
||||
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||
|
||||
else:
|
||||
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut> -l <flux_lim>")
|
||||
|
||||
@@ -9,7 +9,6 @@ prototypes :
|
||||
- bkg_mini(data, error, mask, headers, sub_shape, display, savename, plots_folder) -> n_data_array, n_error_array, headers, background)
|
||||
Compute the error (noise) of the input array by looking at the sub-region of minimal flux in every image and of shape sub_shape.
|
||||
"""
|
||||
import sys
|
||||
from os.path import join as path_join
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
@@ -21,36 +20,40 @@ from datetime import datetime
|
||||
from lib.plots import plot_obs
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
|
||||
def gauss(x, *p):
|
||||
N, mu, sigma = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2))
|
||||
|
||||
|
||||
def gausspol(x, *p):
|
||||
N, mu, sigma, a, b, c, d = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2)) + a*np.log(x) + b/x + c*x + d
|
||||
|
||||
|
||||
def bin_centers(edges):
|
||||
return (edges[1:]+edges[:-1])/2.
|
||||
|
||||
|
||||
def display_bkg(data, background, std_bkg, headers, histograms=None, binning=None, coeff=None, rectangle=None, savename=None, plots_folder="./"):
|
||||
plt.rcParams.update({'font.size': 15})
|
||||
convert_flux = np.array([head['photflam'] for head in headers])
|
||||
date_time = np.array([headers[i]['date-obs']+';'+headers[i]['time-obs']
|
||||
for i in range(len(headers))])
|
||||
date_time = np.array([datetime.strptime(d,'%Y-%m-%d;%H:%M:%S')
|
||||
for d in date_time])
|
||||
for i in range(len(headers))])
|
||||
date_time = np.array([datetime.strptime(d, '%Y-%m-%d;%H:%M:%S')
|
||||
for d in date_time])
|
||||
filt = np.array([headers[i]['filtnam1'] for i in range(len(headers))])
|
||||
dict_filt = {"POL0":'r', "POL60":'g', "POL120":'b'}
|
||||
dict_filt = {"POL0": 'r', "POL60": 'g', "POL120": 'b'}
|
||||
c_filt = np.array([dict_filt[f] for f in filt])
|
||||
|
||||
fig,ax = plt.subplots(figsize=(10,6), constrained_layout=True)
|
||||
fig, ax = plt.subplots(figsize=(10, 6), constrained_layout=True)
|
||||
for f in np.unique(filt):
|
||||
mask = [fil==f for fil in filt]
|
||||
mask = [fil == f for fil in filt]
|
||||
ax.scatter(date_time[mask], background[mask]*convert_flux[mask],
|
||||
color=dict_filt[f],label="{0:s}".format(f))
|
||||
color=dict_filt[f], label="{0:s}".format(f))
|
||||
ax.errorbar(date_time, background*convert_flux,
|
||||
yerr=std_bkg*convert_flux, fmt='+k',
|
||||
markersize=0, ecolor=c_filt)
|
||||
yerr=std_bkg*convert_flux, fmt='+k',
|
||||
markersize=0, ecolor=c_filt)
|
||||
# Date handling
|
||||
locator = mdates.AutoDateLocator()
|
||||
formatter = mdates.ConciseDateFormatter(locator)
|
||||
@@ -60,85 +63,89 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, binning=Non
|
||||
ax.set_xlabel("Observation date and time")
|
||||
ax.set_ylabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
plt.legend()
|
||||
if not(savename is None):
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_background_flux.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+"_background_flux"+savename[-4:]
|
||||
fig.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
|
||||
fig.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
|
||||
if not(histograms is None):
|
||||
filt_obs = {"POL0":0, "POL60":0, "POL120":0}
|
||||
fig_h, ax_h = plt.subplots(figsize=(10,6), constrained_layout=True)
|
||||
if not (histograms is None):
|
||||
filt_obs = {"POL0": 0, "POL60": 0, "POL120": 0}
|
||||
fig_h, ax_h = plt.subplots(figsize=(10, 6), constrained_layout=True)
|
||||
for i, (hist, bins) in enumerate(zip(histograms, binning)):
|
||||
filt_obs[headers[i]['filtnam1']] += 1
|
||||
ax_h.plot(bins*convert_flux[i],hist,'+',color="C{0:d}".format(i),alpha=0.8,label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
|
||||
ax_h.plot([background[i]*convert_flux[i],background[i]*convert_flux[i]],[hist.min(), hist.max()],'x--',color="C{0:d}".format(i),alpha=0.8)
|
||||
if not(coeff is None):
|
||||
ax_h.plot(bins*convert_flux[i],gausspol(bins,*coeff[i]),'--',color="C{0:d}".format(i),alpha=0.8)
|
||||
ax_h.plot(bins*convert_flux[i], hist, '+', color="C{0:d}".format(i), alpha=0.8,
|
||||
label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
|
||||
ax_h.plot([background[i]*convert_flux[i], background[i]*convert_flux[i]], [hist.min(), hist.max()], 'x--', color="C{0:d}".format(i), alpha=0.8)
|
||||
if not (coeff is None):
|
||||
ax_h.plot(bins*convert_flux[i], gausspol(bins, *coeff[i]), '--', color="C{0:d}".format(i), alpha=0.8)
|
||||
ax_h.set_xscale('log')
|
||||
ax_h.set_ylim([0.,np.max([hist.max() for hist in histograms])])
|
||||
ax_h.set_xlim([np.min(background*convert_flux)*1e-2,np.max(background*convert_flux)*1e2])
|
||||
ax_h.set_ylim([0., np.max([hist.max() for hist in histograms])])
|
||||
ax_h.set_xlim([np.min(background*convert_flux)*1e-2, np.max(background*convert_flux)*1e2])
|
||||
ax_h.set_xlabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
ax_h.set_ylabel(r"Number of pixels in bin")
|
||||
ax_h.set_title("Histogram for each observation")
|
||||
plt.legend()
|
||||
if not(savename is None):
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_histograms.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+"_histograms"+savename[-4:]
|
||||
fig_h.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
|
||||
fig_h.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
|
||||
fig2, ax2 = plt.subplots(figsize=(10,10))
|
||||
fig2, ax2 = plt.subplots(figsize=(10, 10))
|
||||
data0 = data[0]*convert_flux[0]
|
||||
bkg_data0 = data0 <= background[0]*convert_flux[0]
|
||||
instr = headers[0]['instrume']
|
||||
rootname = headers[0]['rootname']
|
||||
exptime = headers[0]['exptime']
|
||||
filt = headers[0]['filtnam1']
|
||||
#plots
|
||||
im2 = ax2.imshow(data0, norm=LogNorm(data0[data0>0.].mean()/10.,data0.max()), origin='lower', cmap='gray')
|
||||
bkg_im = ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
|
||||
if not(rectangle is None):
|
||||
# plots
|
||||
im2 = ax2.imshow(data0, norm=LogNorm(data0[data0 > 0.].mean()/10., data0.max()), origin='lower', cmap='gray')
|
||||
ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
|
||||
if not (rectangle is None):
|
||||
x, y, width, height, angle, color = rectangle[0]
|
||||
ax2.add_patch(Rectangle((x, y),width,height,edgecolor=color,fill=False,lw=2))
|
||||
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.01, 1.00), xycoords='axes fraction',verticalalignment='top', horizontalalignment='left')
|
||||
ax2.add_patch(Rectangle((x, y), width, height, edgecolor=color, fill=False, lw=2))
|
||||
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.01, 1.00), xycoords='axes fraction', verticalalignment='top', horizontalalignment='left')
|
||||
ax2.annotate(filt, color='white', fontsize=14, xy=(0.01, 0.01), xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='left')
|
||||
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(1.00, 0.01), xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='right')
|
||||
ax2.set(xlabel='pixel offset', ylabel='pixel offset',aspect='equal')
|
||||
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(1.00, 0.01),
|
||||
xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='right')
|
||||
ax2.set(xlabel='pixel offset', ylabel='pixel offset', aspect='equal')
|
||||
|
||||
fig2.subplots_adjust(hspace=0, wspace=0, right=1.0)
|
||||
fig2.colorbar(im2, ax=ax2, location='right', aspect=50, pad=0.025, label=r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
|
||||
if not(savename is None):
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_'+filt+'_background_location.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+'_'+filt+'_background_location'+savename[-4:]
|
||||
fig2.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
|
||||
if not(rectangle is None):
|
||||
fig2.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
if not (rectangle is None):
|
||||
plot_obs(data, headers, vmin=data[data > 0.].min()*convert_flux.mean(), vmax=data[data > 0.].max()*convert_flux.mean(), rectangle=rectangle,
|
||||
savename=savename+"_background_location",plots_folder=plots_folder)
|
||||
elif not(rectangle is None):
|
||||
savename=savename+"_background_location", plots_folder=plots_folder)
|
||||
elif not (rectangle is None):
|
||||
plot_obs(data, headers, vmin=data[data > 0.].min(), vmax=data[data > 0.].max(), rectangle=rectangle)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def sky_part(img):
|
||||
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int)%img.size)
|
||||
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int) % img.size)
|
||||
rand_pix = img.flatten()[rand_ind]
|
||||
# Intensity range
|
||||
sky_med = np.median(rand_pix)
|
||||
sig = np.min([img[img<sky_med].std(),img[img>sky_med].std()])
|
||||
sky_range = [sky_med-2.*sig, np.max([sky_med+sig,7e-4])] #Detector background average FOC Data Handbook Sec. 7.6
|
||||
sig = np.min([img[img < sky_med].std(), img[img > sky_med].std()])
|
||||
sky_range = [sky_med-2.*sig, np.max([sky_med+sig, 7e-4])] # Detector background average FOC Data Handbook Sec. 7.6
|
||||
|
||||
sky = img[np.logical_and(img>=sky_range[0],img<=sky_range[1])]
|
||||
sky = img[np.logical_and(img >= sky_range[0], img <= sky_range[1])]
|
||||
return sky, sky_range
|
||||
|
||||
|
||||
def bkg_estimate(img, bins=None, chi2=None, coeff=None):
|
||||
if bins is None or chi2 is None or coeff is None:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
@@ -147,20 +154,21 @@ def bkg_estimate(img, bins=None, chi2=None, coeff=None):
|
||||
bins.append(int(3./2.*bins[-1]))
|
||||
except IndexError:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
hist, bin_edges = np.histogram(img[img>0], bins=bins[-1])
|
||||
hist, bin_edges = np.histogram(img[img > 0], bins=bins[-1])
|
||||
binning = bin_centers(bin_edges)
|
||||
peak = binning[np.argmax(hist)]
|
||||
bins_fwhm = binning[hist>hist.max()/2.]
|
||||
bins_fwhm = binning[hist > hist.max()/2.]
|
||||
fwhm = bins_fwhm[-1]-bins_fwhm[0]
|
||||
p0 = [hist.max(), peak, fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
try:
|
||||
popt, pcov = curve_fit(gausspol, binning, hist, p0=p0)
|
||||
except RuntimeError:
|
||||
popt = p0
|
||||
chi2.append(np.sum((hist - gausspol(binning,*popt))**2)/hist.size)
|
||||
chi2.append(np.sum((hist - gausspol(binning, *popt))**2)/hist.size)
|
||||
coeff.append(popt)
|
||||
return bins, chi2, coeff
|
||||
|
||||
|
||||
def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
----------
|
||||
@@ -208,13 +216,13 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, binning = [], []
|
||||
|
||||
|
||||
for i, image in enumerate(data):
|
||||
#Compute the Count-rate histogram for the image
|
||||
sky, sky_range = sky_part(image[image>0.])
|
||||
# Compute the Count-rate histogram for the image
|
||||
sky, sky_range = sky_part(image[image > 0.])
|
||||
|
||||
bins, chi2, coeff = bkg_estimate(sky)
|
||||
while bins[-1]<256:
|
||||
while bins[-1] < 256:
|
||||
bins, chi2, coeff = bkg_estimate(sky, bins, chi2, coeff)
|
||||
hist, bin_edges = np.histogram(sky, bins=bins[-1])
|
||||
histograms.append(hist)
|
||||
@@ -223,18 +231,18 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
|
||||
weights = 1/chi2**2
|
||||
weights /= weights.sum()
|
||||
|
||||
bkg = np.sum(weights*coeff[:,1])*subtract_error if subtract_error>0 else np.sum(weights*coeff[:,1])
|
||||
|
||||
bkg = np.sum(weights*coeff[:, 1])*subtract_error if subtract_error > 0 else np.sum(weights*coeff[:, 1])
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
#Substract background
|
||||
if subtract_error>0:
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
@@ -293,52 +301,54 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, binning, coeff = [], [], []
|
||||
|
||||
|
||||
for i, image in enumerate(data):
|
||||
#Compute the Count-rate histogram for the image
|
||||
n_mask = np.logical_and(mask,image>0.)
|
||||
# Compute the Count-rate histogram for the image
|
||||
n_mask = np.logical_and(mask, image > 0.)
|
||||
if not (sub_type is None):
|
||||
if type(sub_type) == int:
|
||||
if isinstance(sub_type, int):
|
||||
n_bins = sub_type
|
||||
elif sub_type.lower() in ['sqrt']:
|
||||
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
|
||||
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
|
||||
elif sub_type.lower() in ['sturges']:
|
||||
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int)+1 # Sturges
|
||||
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int)+1 # Sturges
|
||||
elif sub_type.lower() in ['rice']:
|
||||
n_bins = 2*np.fix(np.power(image[n_mask].size,1/3)).astype(int) # Rice
|
||||
n_bins = 2*np.fix(np.power(image[n_mask].size, 1/3)).astype(int) # Rice
|
||||
elif sub_type.lower() in ['scott']:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(3.5*image[n_mask].std()/np.power(image[n_mask].size,1/3))).astype(int) # Scott
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(3.5*image[n_mask].std()/np.power(image[n_mask].size, 1/3))).astype(int) # Scott
|
||||
else:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25]))/np.power(image[n_mask].size,1/3))).astype(int) # Freedman-Diaconis
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
|
||||
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
|
||||
else:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25]))/np.power(image[n_mask].size,1/3))).astype(int) # Freedman-Diaconis
|
||||
|
||||
hist, bin_edges = np.histogram(np.log(image[n_mask]),bins=n_bins)
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
|
||||
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
|
||||
|
||||
hist, bin_edges = np.histogram(np.log(image[n_mask]), bins=n_bins)
|
||||
histograms.append(hist)
|
||||
binning.append(np.exp(bin_centers(bin_edges)))
|
||||
|
||||
#Take the background as the count-rate with the maximum number of pixels
|
||||
#hist_max = binning[-1][np.argmax(hist)]
|
||||
#bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
|
||||
|
||||
#Fit a gaussian to the log-intensity histogram
|
||||
bins_fwhm = binning[-1][hist>hist.max()/2.]
|
||||
|
||||
# Take the background as the count-rate with the maximum number of pixels
|
||||
# hist_max = binning[-1][np.argmax(hist)]
|
||||
# bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
|
||||
|
||||
# Fit a gaussian to the log-intensity histogram
|
||||
bins_fwhm = binning[-1][hist > hist.max()/2.]
|
||||
fwhm = bins_fwhm[-1]-bins_fwhm[0]
|
||||
p0 = [hist.max(), binning[-1][np.argmax(hist)], fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
|
||||
coeff.append(popt)
|
||||
bkg = popt[1]*subtract_error if subtract_error>0 else popt[1]
|
||||
|
||||
bkg = popt[1]*subtract_error if subtract_error > 0 else popt[1]
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
#Substract background
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] < 0.)] = 0.
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] < 0.)] = 0.
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
@@ -346,7 +356,7 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
@@ -396,11 +406,11 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True,
|
||||
"""
|
||||
sub_shape = np.array(sub_shape)
|
||||
# Make sub_shape of odd values
|
||||
if not(np.all(sub_shape%2)):
|
||||
sub_shape += 1-sub_shape%2
|
||||
if not (np.all(sub_shape % 2)):
|
||||
sub_shape += 1-sub_shape % 2
|
||||
shape = np.array(data.shape)
|
||||
diff = (sub_shape-1).astype(int)
|
||||
temp = np.zeros((shape[0],shape[1]-diff[0],shape[2]-diff[1]))
|
||||
temp = np.zeros((shape[0], shape[1]-diff[0], shape[2]-diff[1]))
|
||||
|
||||
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
@@ -408,37 +418,36 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True,
|
||||
background = np.zeros((data.shape[0]))
|
||||
rectangle = []
|
||||
|
||||
for i,image in enumerate(data):
|
||||
for i, image in enumerate(data):
|
||||
# Find the sub-image of smallest integrated flux (suppose no source)
|
||||
#sub-image dominated by background
|
||||
# sub-image dominated by background
|
||||
fmax = np.finfo(np.double).max
|
||||
img = deepcopy(image)
|
||||
img[1-mask] = fmax/(diff[0]*diff[1])
|
||||
for r in range(temp.shape[1]):
|
||||
for c in range(temp.shape[2]):
|
||||
temp[i][r,c] = np.where(mask[r,c], img[r:r+diff[0],c:c+diff[1]].sum(), fmax/(diff[0]*diff[1]))
|
||||
temp[i][r, c] = np.where(mask[r, c], img[r:r+diff[0], c:c+diff[1]].sum(), fmax/(diff[0]*diff[1]))
|
||||
|
||||
minima = np.unravel_index(np.argmin(temp.sum(axis=0)),temp.shape[1:])
|
||||
minima = np.unravel_index(np.argmin(temp.sum(axis=0)), temp.shape[1:])
|
||||
|
||||
for i, image in enumerate(data):
|
||||
rectangle.append([minima[1], minima[0], sub_shape[1], sub_shape[0], 0., 'r'])
|
||||
# Compute error : root mean square of the background
|
||||
sub_image = image[minima[0]:minima[0]+sub_shape[0],minima[1]:minima[1]+sub_shape[1]]
|
||||
#bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error>0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||
sub_image = image[minima[0]:minima[0]+sub_shape[0], minima[1]:minima[1]+sub_shape[1]]
|
||||
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
#Substract background
|
||||
if subtract_error>0.:
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0.:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
"""
|
||||
Library functions for graham algorithm implementation (find the convex hull
|
||||
of a given list of points).
|
||||
Library functions for graham algorithm implementation (find the convex hull of a given list of points).
|
||||
"""
|
||||
|
||||
from copy import deepcopy
|
||||
@@ -8,30 +7,33 @@ import numpy as np
|
||||
|
||||
|
||||
def clean_ROI(image):
|
||||
H,J = [],[]
|
||||
"""
|
||||
Remove instruments borders from an observation.
|
||||
"""
|
||||
H, J = [], []
|
||||
|
||||
shape = np.array(image.shape)
|
||||
row, col = np.indices(shape)
|
||||
|
||||
for i in range(0,shape[0]):
|
||||
r = row[i,:][image[i,:]>0.]
|
||||
c = col[i,:][image[i,:]>0.]
|
||||
if len(r)>1 and len(c)>1:
|
||||
H.append((r[0],c[0]))
|
||||
H.append((r[-1],c[-1]))
|
||||
for i in range(0, shape[0]):
|
||||
r = row[i, :][image[i, :] > 0.]
|
||||
c = col[i, :][image[i, :] > 0.]
|
||||
if len(r) > 1 and len(c) > 1:
|
||||
H.append((r[0], c[0]))
|
||||
H.append((r[-1], c[-1]))
|
||||
H = np.array(H)
|
||||
for j in range(0,shape[1]):
|
||||
r = row[:,j][image[:,j]>0.]
|
||||
c = col[:,j][image[:,j]>0.]
|
||||
if len(r)>1 and len(c)>1:
|
||||
J.append((r[0],c[0]))
|
||||
J.append((r[-1],c[-1]))
|
||||
for j in range(0, shape[1]):
|
||||
r = row[:, j][image[:, j] > 0.]
|
||||
c = col[:, j][image[:, j] > 0.]
|
||||
if len(r) > 1 and len(c) > 1:
|
||||
J.append((r[0], c[0]))
|
||||
J.append((r[-1], c[-1]))
|
||||
J = np.array(J)
|
||||
xmin = np.min([H[:,1].min(),J[:,1].min()])
|
||||
xmax = np.max([H[:,1].max(),J[:,1].max()])+1
|
||||
ymin = np.min([H[:,0].min(),J[:,0].min()])
|
||||
ymax = np.max([H[:,0].max(),J[:,0].max()])+1
|
||||
return np.array([xmin,xmax,ymin,ymax])
|
||||
xmin = np.min([H[:, 1].min(), J[:, 1].min()])
|
||||
xmax = np.max([H[:, 1].max(), J[:, 1].max()])+1
|
||||
ymin = np.min([H[:, 0].min(), J[:, 0].min()])
|
||||
ymax = np.max([H[:, 0].max(), J[:, 0].max()])+1
|
||||
return np.array([xmin, xmax, ymin, ymax])
|
||||
|
||||
|
||||
# Define angle and vectors operations
|
||||
@@ -116,7 +118,8 @@ def min_lexico(s):
|
||||
"""
|
||||
m = s[0]
|
||||
for x in s:
|
||||
if lexico(x, m): m = x
|
||||
if lexico(x, m):
|
||||
m = x
|
||||
return m
|
||||
|
||||
|
||||
@@ -145,16 +148,16 @@ def comp(Omega, A, B):
|
||||
|
||||
|
||||
# Implement quicksort
|
||||
def partition(s, l, r, order):
|
||||
def partition(s, left, right, order):
|
||||
"""
|
||||
Take a random element of a list 's' between indexes 'l', 'r' and place it
|
||||
Take a random element of a list 's' between indexes 'left', 'right' and place it
|
||||
at its right spot using relation order 'order'. Return the index at which
|
||||
it was placed.
|
||||
----------
|
||||
Inputs:
|
||||
s : list
|
||||
List of elements to be ordered.
|
||||
l, r : int
|
||||
left, right : int
|
||||
Index of the first and last elements to be considered.
|
||||
order : func: A, B -> bool
|
||||
Relation order between 2 elements A, B that returns True if A<=B,
|
||||
@@ -164,30 +167,29 @@ def partition(s, l, r, order):
|
||||
index : int
|
||||
Index at which have been placed the element chosen by the function.
|
||||
"""
|
||||
i = l - 1
|
||||
for j in range(l, r):
|
||||
if order(s[j], s[r]):
|
||||
i = left - 1
|
||||
for j in range(left, right):
|
||||
if order(s[j], s[right]):
|
||||
i = i + 1
|
||||
temp = deepcopy(s[i])
|
||||
s[i] = deepcopy(s[j])
|
||||
s[j] = deepcopy(temp)
|
||||
temp = deepcopy(s[i+1])
|
||||
s[i+1] = deepcopy(s[r])
|
||||
s[r] = deepcopy(temp)
|
||||
s[i+1] = deepcopy(s[right])
|
||||
s[right] = deepcopy(temp)
|
||||
return i + 1
|
||||
|
||||
|
||||
def sort_aux(s, l, r, order):
|
||||
def sort_aux(s, left, right, order):
|
||||
"""
|
||||
Sort a list 's' between indexes 'l', 'r' using relation order 'order' by
|
||||
Sort a list 's' between indexes 'left', 'right' using relation order 'order' by
|
||||
dividing it in 2 sub-lists and sorting these.
|
||||
"""
|
||||
if l <= r:
|
||||
# Call partition function that gives an index on which the list will be
|
||||
#divided
|
||||
q = partition(s, l, r, order)
|
||||
sort_aux(s, l, q - 1, order)
|
||||
sort_aux(s, q + 1, r, order)
|
||||
if left <= right:
|
||||
# Call partition function that gives an index on which the list will be divided
|
||||
q = partition(s, left, right, order)
|
||||
sort_aux(s, left, q - 1, order)
|
||||
sort_aux(s, q + 1, right, order)
|
||||
|
||||
|
||||
def quicksort(s, order):
|
||||
@@ -204,7 +206,7 @@ def sort_angles_distances(Omega, s):
|
||||
Sort the list of points 's' for the composition order given reference point
|
||||
Omega.
|
||||
"""
|
||||
order = lambda A, B: comp(Omega, A, B)
|
||||
def order(A, B): return comp(Omega, A, B)
|
||||
quicksort(s, order)
|
||||
|
||||
|
||||
@@ -326,24 +328,24 @@ def image_hull(image, step=5, null_val=0., inside=True):
|
||||
H = []
|
||||
shape = np.array(image.shape)
|
||||
row, col = np.indices(shape)
|
||||
for i in range(0,shape[0],step):
|
||||
r = row[i,:][image[i,:]>null_val]
|
||||
c = col[i,:][image[i,:]>null_val]
|
||||
if len(r)>1 and len(c)>1:
|
||||
H.append((r[0],c[0]))
|
||||
H.append((r[-1],c[-1]))
|
||||
for j in range(0,shape[1],step):
|
||||
r = row[:,j][image[:,j]>null_val]
|
||||
c = col[:,j][image[:,j]>null_val]
|
||||
if len(r)>1 and len(c)>1:
|
||||
if not((r[0],c[0]) in H):
|
||||
H.append((r[0],c[0]))
|
||||
if not((r[-1],c[-1]) in H):
|
||||
H.append((r[-1],c[-1]))
|
||||
for i in range(0, shape[0], step):
|
||||
r = row[i, :][image[i, :] > null_val]
|
||||
c = col[i, :][image[i, :] > null_val]
|
||||
if len(r) > 1 and len(c) > 1:
|
||||
H.append((r[0], c[0]))
|
||||
H.append((r[-1], c[-1]))
|
||||
for j in range(0, shape[1], step):
|
||||
r = row[:, j][image[:, j] > null_val]
|
||||
c = col[:, j][image[:, j] > null_val]
|
||||
if len(r) > 1 and len(c) > 1:
|
||||
if not ((r[0], c[0]) in H):
|
||||
H.append((r[0], c[0]))
|
||||
if not ((r[-1], c[-1]) in H):
|
||||
H.append((r[-1], c[-1]))
|
||||
S = np.array(convex_hull(H))
|
||||
|
||||
x_min, y_min = S[:,0]<S[:,0].mean(), S[:,1]<S[:,1].mean()
|
||||
x_max, y_max = S[:,0]>S[:,0].mean(), S[:,1]>S[:,1].mean()
|
||||
x_min, y_min = S[:, 0] < S[:, 0].mean(), S[:, 1] < S[:, 1].mean()
|
||||
x_max, y_max = S[:, 0] > S[:, 0].mean(), S[:, 1] > S[:, 1].mean()
|
||||
# Get the 4 extrema
|
||||
S0 = S[x_min*y_min][np.abs(0-S[x_min*y_min].sum(axis=1)).min() == np.abs(0-S[x_min*y_min].sum(axis=1))][0]
|
||||
S1 = S[x_min*y_max][np.abs(shape[1]-S[x_min*y_max].sum(axis=1)).min() == np.abs(shape[1]-S[x_min*y_max].sum(axis=1))][0]
|
||||
@@ -351,14 +353,14 @@ def image_hull(image, step=5, null_val=0., inside=True):
|
||||
S3 = S[x_max*y_max][np.abs(shape.sum()-S[x_max*y_max].sum(axis=1)).min() == np.abs(shape.sum()-S[x_max*y_max].sum(axis=1))][0]
|
||||
# Get the vertex of the biggest included rectangle
|
||||
if inside:
|
||||
f0 = np.max([S0[0],S1[0]])
|
||||
f1 = np.min([S2[0],S3[0]])
|
||||
f2 = np.max([S0[1],S2[1]])
|
||||
f3 = np.min([S1[1],S3[1]])
|
||||
f0 = np.max([S0[0], S1[0]])
|
||||
f1 = np.min([S2[0], S3[0]])
|
||||
f2 = np.max([S0[1], S2[1]])
|
||||
f3 = np.min([S1[1], S3[1]])
|
||||
else:
|
||||
f0 = np.min([S0[0],S1[0]])
|
||||
f1 = np.max([S2[0],S3[0]])
|
||||
f2 = np.min([S0[1],S2[1]])
|
||||
f3 = np.max([S1[1],S3[1]])
|
||||
f0 = np.min([S0[0], S1[0]])
|
||||
f1 = np.max([S2[0], S3[0]])
|
||||
f2 = np.min([S0[1], S2[1]])
|
||||
f3 = np.max([S1[1], S3[1]])
|
||||
|
||||
return np.array([f0, f1, f2, f3]).astype(int)
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
"""
|
||||
Library functions for phase cross-correlation computation.
|
||||
"""
|
||||
##Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+)
|
||||
#Otherwise fall back to numpy.fft.
|
||||
#Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer
|
||||
#C++/pybind11 version called pypocketfft
|
||||
# Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+)
|
||||
# Otherwise fall back to numpy.fft.
|
||||
# Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer
|
||||
# C++/pybind11 version called pypocketfft
|
||||
try:
|
||||
import scipy.fft as fft
|
||||
except ImportError:
|
||||
@@ -14,7 +14,7 @@ import numpy as np
|
||||
|
||||
|
||||
def _upsampled_dft(data, upsampled_region_size, upsample_factor=1,
|
||||
axis_offsets=None):
|
||||
axis_offsets=None):
|
||||
"""
|
||||
Upsampled DFT by matrix multiplication.
|
||||
This code is intended to provide the same result as if the following
|
||||
@@ -243,7 +243,7 @@ def phase_cross_correlation(reference_image, moving_image, *,
|
||||
raise ValueError(
|
||||
"NaN values found, please remove NaNs from your input data")
|
||||
|
||||
return shifts, _compute_error(CCmax, src_amp, target_amp),\
|
||||
return shifts, _compute_error(CCmax, src_amp, target_amp), \
|
||||
_compute_phasediff(CCmax)
|
||||
else:
|
||||
return shifts
|
||||
|
||||
@@ -4,13 +4,13 @@ Library functions for the implementation of various deconvolution algorithms.
|
||||
prototypes :
|
||||
- gaussian_psf(FWHM, shape) -> kernel
|
||||
Return the normalized gaussian point spread function over some kernel shape.
|
||||
|
||||
|
||||
- from_file_psf(filename) -> kernel
|
||||
Get the point spread function from an external FITS file.
|
||||
|
||||
|
||||
- wiener(image, psf, alpha, clip) -> im_deconv
|
||||
Implement the simplified Wiener filtering.
|
||||
|
||||
|
||||
- van_cittert(image, psf, alpha, iterations, clip, filter_epsilon) -> im_deconv
|
||||
Implement Van-Cittert iterative algorithm.
|
||||
|
||||
@@ -43,494 +43,521 @@ def abs2(x):
|
||||
|
||||
|
||||
def zeropad(arr, shape):
|
||||
"""
|
||||
Zero-pad array ARR to given shape.
|
||||
The contents of ARR is approximately centered in the result.
|
||||
"""
|
||||
rank = arr.ndim
|
||||
if len(shape) != rank:
|
||||
raise ValueError("bad number of dimensions")
|
||||
diff = np.asarray(shape) - np.asarray(arr.shape)
|
||||
if diff.min() < 0:
|
||||
raise ValueError("output dimensions must be larger or equal input dimensions")
|
||||
offset = diff//2
|
||||
z = np.zeros(shape, dtype=arr.dtype)
|
||||
if rank == 1:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
z[i0:n0] = arr
|
||||
elif rank == 2:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]; n1 = i1 + arr.shape[1]
|
||||
z[i0:n0,i1:n1] = arr
|
||||
elif rank == 3:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]; n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]; n2 = i2 + arr.shape[2]
|
||||
z[i0:n0,i1:n1,i2:n2] = arr
|
||||
elif rank == 4:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]; n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]; n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]; n3 = i3 + arr.shape[3]
|
||||
z[i0:n0,i1:n1,i2:n2,i3:n3] = arr
|
||||
elif rank == 5:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]; n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]; n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]; n3 = i3 + arr.shape[3]
|
||||
i4 = offset[4]; n4 = i4 + arr.shape[4]
|
||||
z[i0:n0,i1:n1,i2:n2,i3:n3,i4:n4] = arr
|
||||
elif rank == 6:
|
||||
i0 = offset[0]; n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]; n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]; n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]; n3 = i3 + arr.shape[3]
|
||||
i4 = offset[4]; n4 = i4 + arr.shape[4]
|
||||
i5 = offset[5]; n5 = i5 + arr.shape[5]
|
||||
z[i0:n0,i1:n1,i2:n2,i3:n3,i4:n4,i5:n5] = arr
|
||||
else:
|
||||
raise ValueError("too many dimensions")
|
||||
return z
|
||||
"""
|
||||
Zero-pad array ARR to given shape.
|
||||
The contents of ARR is approximately centered in the result.
|
||||
"""
|
||||
rank = arr.ndim
|
||||
if len(shape) != rank:
|
||||
raise ValueError("bad number of dimensions")
|
||||
diff = np.asarray(shape) - np.asarray(arr.shape)
|
||||
if diff.min() < 0:
|
||||
raise ValueError("output dimensions must be larger or equal input dimensions")
|
||||
offset = diff//2
|
||||
z = np.zeros(shape, dtype=arr.dtype)
|
||||
if rank == 1:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
z[i0:n0] = arr
|
||||
elif rank == 2:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]
|
||||
n1 = i1 + arr.shape[1]
|
||||
z[i0:n0, i1:n1] = arr
|
||||
elif rank == 3:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]
|
||||
n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]
|
||||
n2 = i2 + arr.shape[2]
|
||||
z[i0:n0, i1:n1, i2:n2] = arr
|
||||
elif rank == 4:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]
|
||||
n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]
|
||||
n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]
|
||||
n3 = i3 + arr.shape[3]
|
||||
z[i0:n0, i1:n1, i2:n2, i3:n3] = arr
|
||||
elif rank == 5:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]
|
||||
n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]
|
||||
n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]
|
||||
n3 = i3 + arr.shape[3]
|
||||
i4 = offset[4]
|
||||
n4 = i4 + arr.shape[4]
|
||||
z[i0:n0, i1:n1, i2:n2, i3:n3, i4:n4] = arr
|
||||
elif rank == 6:
|
||||
i0 = offset[0]
|
||||
n0 = i0 + arr.shape[0]
|
||||
i1 = offset[1]
|
||||
n1 = i1 + arr.shape[1]
|
||||
i2 = offset[2]
|
||||
n2 = i2 + arr.shape[2]
|
||||
i3 = offset[3]
|
||||
n3 = i3 + arr.shape[3]
|
||||
i4 = offset[4]
|
||||
n4 = i4 + arr.shape[4]
|
||||
i5 = offset[5]
|
||||
n5 = i5 + arr.shape[5]
|
||||
z[i0:n0, i1:n1, i2:n2, i3:n3, i4:n4, i5:n5] = arr
|
||||
else:
|
||||
raise ValueError("too many dimensions")
|
||||
return z
|
||||
|
||||
|
||||
def gaussian2d(x, y, sigma):
|
||||
return np.exp(-(x**2+y**2)/(2*sigma**2))/(2*np.pi*sigma**2)
|
||||
return np.exp(-(x**2+y**2)/(2*sigma**2))/(2*np.pi*sigma**2)
|
||||
|
||||
|
||||
def gaussian_psf(FWHM=1., shape=(5,5)):
|
||||
"""
|
||||
Define the gaussian Point-Spread-Function of chosen shape and FWHM.
|
||||
----------
|
||||
Inputs:
|
||||
FWHM : float, optional
|
||||
The Full Width at Half Maximum of the desired gaussian function for the
|
||||
PSF in pixel increments.
|
||||
Defaults to 1.
|
||||
shape : tuple, optional
|
||||
The shape of the PSF kernel. Must be of dimension 2.
|
||||
Defaults to (5,5).
|
||||
----------
|
||||
Returns:
|
||||
kernel : numpy.ndarray
|
||||
Kernel containing the weights of the desired gaussian PSF.
|
||||
"""
|
||||
# Compute standard deviation from FWHM
|
||||
stdev = FWHM/(2.*np.sqrt(2.*np.log(2.)))
|
||||
def gaussian_psf(FWHM=1., shape=(5, 5)):
|
||||
"""
|
||||
Define the gaussian Point-Spread-Function of chosen shape and FWHM.
|
||||
----------
|
||||
Inputs:
|
||||
FWHM : float, optional
|
||||
The Full Width at Half Maximum of the desired gaussian function for the
|
||||
PSF in pixel increments.
|
||||
Defaults to 1.
|
||||
shape : tuple, optional
|
||||
The shape of the PSF kernel. Must be of dimension 2.
|
||||
Defaults to (5,5).
|
||||
----------
|
||||
Returns:
|
||||
kernel : numpy.ndarray
|
||||
Kernel containing the weights of the desired gaussian PSF.
|
||||
"""
|
||||
# Compute standard deviation from FWHM
|
||||
stdev = FWHM/(2.*np.sqrt(2.*np.log(2.)))
|
||||
|
||||
# Create kernel of desired shape
|
||||
x, y = np.meshgrid(np.arange(-shape[0]/2,shape[0]/2),np.arange(-shape[1]/2,shape[1]/2))
|
||||
kernel = gaussian2d(x, y, stdev)
|
||||
|
||||
return kernel/kernel.sum()
|
||||
# Create kernel of desired shape
|
||||
x, y = np.meshgrid(np.arange(-shape[0]/2, shape[0]/2), np.arange(-shape[1]/2, shape[1]/2))
|
||||
kernel = gaussian2d(x, y, stdev)
|
||||
|
||||
return kernel/kernel.sum()
|
||||
|
||||
|
||||
def from_file_psf(filename):
|
||||
"""
|
||||
Get the Point-Spread-Function from an external FITS file.
|
||||
Such PSF can be generated using the TinyTim standalone program by STSCI.
|
||||
See:
|
||||
[1] https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/tiny-tim-hst-psf-modeling
|
||||
[2] https://doi.org/10.1117/12.892762
|
||||
----------
|
||||
Inputs:
|
||||
filename : str
|
||||
----------
|
||||
kernel : numpy.ndarray
|
||||
Kernel containing the weights of the desired gaussian PSF.
|
||||
"""
|
||||
with fits.open(filename) as f:
|
||||
psf = f[0].data
|
||||
if (type(psf) != np.ndarray) or len(psf) != 2:
|
||||
raise ValueError("Invalid PSF image in PrimaryHDU at {0:s}".format(filename))
|
||||
#Return the normalized Point Spread Function
|
||||
kernel = psf/psf.max()
|
||||
return kernel
|
||||
"""
|
||||
Get the Point-Spread-Function from an external FITS file.
|
||||
Such PSF can be generated using the TinyTim standalone program by STSCI.
|
||||
See:
|
||||
[1] https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/tiny-tim-hst-psf-modeling
|
||||
[2] https://doi.org/10.1117/12.892762
|
||||
----------
|
||||
Inputs:
|
||||
filename : str
|
||||
----------
|
||||
kernel : numpy.ndarray
|
||||
Kernel containing the weights of the desired gaussian PSF.
|
||||
"""
|
||||
with fits.open(filename) as f:
|
||||
psf = f[0].data
|
||||
if isinstance(psf, np.ndarray) or len(psf) != 2:
|
||||
raise ValueError("Invalid PSF image in PrimaryHDU at {0:s}".format(filename))
|
||||
# Return the normalized Point Spread Function
|
||||
kernel = psf/psf.max()
|
||||
return kernel
|
||||
|
||||
|
||||
def wiener(image, psf, alpha=0.1, clip=True):
|
||||
"""
|
||||
Implement the simplified Wiener filtering.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A parameter value for numerous deconvolution algorithms.
|
||||
Defaults to 0.1
|
||||
clip : boolean, optional
|
||||
If true, pixel value of the result above 1 or under -1 are thresholded
|
||||
for skimage pipeline compatibility.
|
||||
Defaults to True.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = zeropad(psf.astype(float_type, copy=False), image.shape)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
"""
|
||||
Implement the simplified Wiener filtering.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A parameter value for numerous deconvolution algorithms.
|
||||
Defaults to 0.1
|
||||
clip : boolean, optional
|
||||
If true, pixel value of the result above 1 or under -1 are thresholded
|
||||
for skimage pipeline compatibility.
|
||||
Defaults to True.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = zeropad(psf.astype(float_type, copy=False), image.shape)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
|
||||
ft_y = np.fft.fftn(im_deconv)
|
||||
ft_h = np.fft.fftn(np.fft.ifftshift(psf))
|
||||
ft_y = np.fft.fftn(im_deconv)
|
||||
ft_h = np.fft.fftn(np.fft.ifftshift(psf))
|
||||
|
||||
ft_x = ft_h.conj()*ft_y / (abs2(ft_h) + alpha)
|
||||
im_deconv = np.fft.ifftn(ft_x).real
|
||||
ft_x = ft_h.conj()*ft_y / (abs2(ft_h) + alpha)
|
||||
im_deconv = np.fft.ifftn(ft_x).real
|
||||
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
|
||||
return im_deconv/im_deconv.max()
|
||||
return im_deconv/im_deconv.max()
|
||||
|
||||
|
||||
def van_cittert(image, psf, alpha=0.1, iterations=20, clip=True, filter_epsilon=None):
|
||||
"""
|
||||
Van-Citter deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
alpha : float, optional
|
||||
A weight parameter for the deconvolution step.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
"""
|
||||
Van-Citter deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
alpha : float, optional
|
||||
A weight parameter for the deconvolution step.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
|
||||
else:
|
||||
relative_blur = image - conv
|
||||
im_deconv += alpha*relative_blur
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
|
||||
else:
|
||||
relative_blur = image - conv
|
||||
im_deconv += alpha*relative_blur
|
||||
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
|
||||
return im_deconv
|
||||
return im_deconv
|
||||
|
||||
|
||||
def richardson_lucy(image, psf, iterations=20, clip=True, filter_epsilon=None):
|
||||
"""
|
||||
Richardson-Lucy deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
----------
|
||||
References
|
||||
[1] https://doi.org/10.1364/JOSA.62.000055
|
||||
[2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
psf_mirror = np.flip(psf)
|
||||
"""
|
||||
Richardson-Lucy deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
----------
|
||||
References
|
||||
[1] https://doi.org/10.1364/JOSA.62.000055
|
||||
[2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
psf_mirror = np.flip(psf)
|
||||
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image / conv)
|
||||
else:
|
||||
relative_blur = image / conv
|
||||
im_deconv *= convolve(relative_blur, psf_mirror, mode='same')
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image / conv)
|
||||
else:
|
||||
relative_blur = image / conv
|
||||
im_deconv *= convolve(relative_blur, psf_mirror, mode='same')
|
||||
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
|
||||
return im_deconv
|
||||
return im_deconv
|
||||
|
||||
|
||||
def one_step_gradient(image, psf, iterations=20, clip=True, filter_epsilon=None):
|
||||
"""
|
||||
One-step gradient deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
psf_mirror = np.flip(psf)
|
||||
"""
|
||||
One-step gradient deconvolution algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.darray
|
||||
Input degraded image (can be N dimensional) of floats between 0 and 1.
|
||||
psf : numpy.darray
|
||||
The point spread function.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
clip : boolean, optional
|
||||
True by default. If true, pixel value of the result above 1 or
|
||||
under -1 are thresholded for skimage pipeline compatibility.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
im_deconv = image.copy()
|
||||
psf_mirror = np.flip(psf)
|
||||
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
|
||||
else:
|
||||
relative_blur = image - conv
|
||||
im_deconv += convolve(relative_blur, psf_mirror, mode='same')
|
||||
for _ in range(iterations):
|
||||
conv = convolve(im_deconv, psf, mode='same')
|
||||
if filter_epsilon:
|
||||
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
|
||||
else:
|
||||
relative_blur = image - conv
|
||||
im_deconv += convolve(relative_blur, psf_mirror, mode='same')
|
||||
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
if clip:
|
||||
im_deconv[im_deconv > 1] = 1
|
||||
im_deconv[im_deconv < -1] = -1
|
||||
|
||||
return im_deconv
|
||||
return im_deconv
|
||||
|
||||
|
||||
def conjgrad(image, psf, alpha=0.1, error=None, iterations=20):
|
||||
"""
|
||||
Implement the Conjugate Gradient algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A weight parameter for the regularisation matrix.
|
||||
Defaults to 0.1
|
||||
error : numpy.ndarray, optional
|
||||
Known background noise on the inputed image. Will be used for weighted
|
||||
deconvolution. If None, all weights will be set to 1.
|
||||
Defaults to None.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
Defaults to 20.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
|
||||
# A.x = b avec A = HtWH+aDtD et b = HtWy
|
||||
#Define ft_h : the zeropadded and shifted Fourier transform of the PSF
|
||||
ft_h = np.fft.fftn(np.fft.ifftshift(zeropad(psf,image.shape)))
|
||||
#Define weights as normalized signal to noise ratio
|
||||
if error is None:
|
||||
wgt = np.ones(image.shape)
|
||||
else:
|
||||
wgt = image/error
|
||||
wgt /= wgt.max()
|
||||
"""
|
||||
Implement the Conjugate Gradient algorithm.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A weight parameter for the regularisation matrix.
|
||||
Defaults to 0.1
|
||||
error : numpy.ndarray, optional
|
||||
Known background noise on the inputed image. Will be used for weighted
|
||||
deconvolution. If None, all weights will be set to 1.
|
||||
Defaults to None.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
Defaults to 20.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
float_type = np.promote_types(image.dtype, np.float32)
|
||||
image = image.astype(float_type, copy=False)
|
||||
psf = psf.astype(float_type, copy=False)
|
||||
psf /= psf.sum()
|
||||
|
||||
def W(x):
|
||||
"""Define W operator : apply weights"""
|
||||
return wgt*x
|
||||
# A.x = b avec A = HtWH+aDtD et b = HtWy
|
||||
# Define ft_h : the zeropadded and shifted Fourier transform of the PSF
|
||||
ft_h = np.fft.fftn(np.fft.ifftshift(zeropad(psf, image.shape)))
|
||||
# Define weights as normalized signal to noise ratio
|
||||
if error is None:
|
||||
wgt = np.ones(image.shape)
|
||||
else:
|
||||
wgt = image/error
|
||||
wgt /= wgt.max()
|
||||
|
||||
def H(x):
|
||||
"""Define H operator : convolution with PSF"""
|
||||
return np.fft.ifftn(ft_h*np.fft.fftn(x)).real
|
||||
def W(x):
|
||||
"""Define W operator : apply weights"""
|
||||
return wgt*x
|
||||
|
||||
def Ht(x):
|
||||
"""Define Ht operator : transpose of H"""
|
||||
return np.fft.ifftn(ft_h.conj()*np.fft.fftn(x)).real
|
||||
def H(x):
|
||||
"""Define H operator : convolution with PSF"""
|
||||
return np.fft.ifftn(ft_h*np.fft.fftn(x)).real
|
||||
|
||||
def DtD(x):
|
||||
"""Returns the result of D'.D.x where D is a (multi-dimensional)
|
||||
finite difference operator and D' is its transpose."""
|
||||
dims = x.shape
|
||||
r = np.zeros(dims, dtype=x.dtype) # to store the result
|
||||
rank = x.ndim # number of dimensions
|
||||
if rank == 0: return r
|
||||
if dims[0] >= 2:
|
||||
dx = x[1:-1,...] - x[0:-2,...]
|
||||
r[1:-1,...] += dx
|
||||
r[0:-2,...] -= dx
|
||||
if rank == 1: return r
|
||||
if dims[1] >= 2:
|
||||
dx = x[:,1:-1,...] - x[:,0:-2,...]
|
||||
r[:,1:-1,...] += dx
|
||||
r[:,0:-2,...] -= dx
|
||||
if rank == 2: return r
|
||||
if dims[2] >= 2:
|
||||
dx = x[:,:,1:-1,...] - x[:,:,0:-2,...]
|
||||
r[:,:,1:-1,...] += dx
|
||||
r[:,:,0:-2,...] -= dx
|
||||
if rank == 3: return r
|
||||
if dims[3] >= 2:
|
||||
dx = x[:,:,:,1:-1,...] - x[:,:,:,0:-2,...]
|
||||
r[:,:,:,1:-1,...] += dx
|
||||
r[:,:,:,0:-2,...] -= dx
|
||||
if rank == 4: return r
|
||||
if dims[4] >= 2:
|
||||
dx = x[:,:,:,:,1:-1,...] - x[:,:,:,:,0:-2,...]
|
||||
r[:,:,:,:,1:-1,...] += dx
|
||||
r[:,:,:,:,0:-2,...] -= dx
|
||||
if rank == 5: return r
|
||||
raise ValueError("too many dimensions")
|
||||
def Ht(x):
|
||||
"""Define Ht operator : transpose of H"""
|
||||
return np.fft.ifftn(ft_h.conj()*np.fft.fftn(x)).real
|
||||
|
||||
def A(x):
|
||||
"""Define symetric positive semi definite operator A"""
|
||||
return Ht(W(H(x)))+alpha*DtD(x)
|
||||
def DtD(x):
|
||||
"""Returns the result of D'.D.x where D is a (multi-dimensional)
|
||||
finite difference operator and D' is its transpose."""
|
||||
dims = x.shape
|
||||
r = np.zeros(dims, dtype=x.dtype) # to store the result
|
||||
rank = x.ndim # number of dimensions
|
||||
if rank == 0:
|
||||
return r
|
||||
if dims[0] >= 2:
|
||||
dx = x[1:-1, ...] - x[0:-2, ...]
|
||||
r[1:-1, ...] += dx
|
||||
r[0:-2, ...] -= dx
|
||||
if rank == 1:
|
||||
return r
|
||||
if dims[1] >= 2:
|
||||
dx = x[:, 1:-1, ...] - x[:, 0:-2, ...]
|
||||
r[:, 1:-1, ...] += dx
|
||||
r[:, 0:-2, ...] -= dx
|
||||
if rank == 2:
|
||||
return r
|
||||
if dims[2] >= 2:
|
||||
dx = x[:, :, 1:-1, ...] - x[:, :, 0:-2, ...]
|
||||
r[:, :, 1:-1, ...] += dx
|
||||
r[:, :, 0:-2, ...] -= dx
|
||||
if rank == 3:
|
||||
return r
|
||||
if dims[3] >= 2:
|
||||
dx = x[:, :, :, 1:-1, ...] - x[:, :, :, 0:-2, ...]
|
||||
r[:, :, :, 1:-1, ...] += dx
|
||||
r[:, :, :, 0:-2, ...] -= dx
|
||||
if rank == 4:
|
||||
return r
|
||||
if dims[4] >= 2:
|
||||
dx = x[:, :, :, :, 1:-1, ...] - x[:, :, :, :, 0:-2, ...]
|
||||
r[:, :, :, :, 1:-1, ...] += dx
|
||||
r[:, :, :, :, 0:-2, ...] -= dx
|
||||
if rank == 5:
|
||||
return r
|
||||
raise ValueError("too many dimensions")
|
||||
|
||||
#Define obtained vector A.x = b
|
||||
b = Ht(W(image))
|
||||
|
||||
def inner(x,y):
|
||||
"""Compute inner product of X and Y regardless their shapes
|
||||
(their number of elements must however match)."""
|
||||
return np.inner(x.ravel(),y.ravel())
|
||||
def A(x):
|
||||
"""Define symetric positive semi definite operator A"""
|
||||
return Ht(W(H(x)))+alpha*DtD(x)
|
||||
|
||||
# Compute initial residuals.
|
||||
r = np.copy(b)
|
||||
x = np.zeros(b.shape, dtype=b.dtype)
|
||||
rho = inner(r,r)
|
||||
epsilon = np.max([0., 1e-5*np.sqrt(rho)])
|
||||
# Define obtained vector A.x = b
|
||||
b = Ht(W(image))
|
||||
|
||||
# Conjugate gradient iterations.
|
||||
beta = 0.0
|
||||
k = 0
|
||||
while (k <= iterations) and (np.sqrt(rho) > epsilon):
|
||||
if np.sqrt(rho) <= epsilon:
|
||||
print("Converged before maximum iteration.")
|
||||
break
|
||||
k += 1
|
||||
if k > iterations:
|
||||
print("Didn't converge before maximum iteration.")
|
||||
break
|
||||
def inner(x, y):
|
||||
"""Compute inner product of X and Y regardless their shapes
|
||||
(their number of elements must however match)."""
|
||||
return np.inner(x.ravel(), y.ravel())
|
||||
|
||||
# Next search direction.
|
||||
if beta == 0.0:
|
||||
p = r
|
||||
else:
|
||||
p = r + beta*p
|
||||
# Compute initial residuals.
|
||||
r = np.copy(b)
|
||||
x = np.zeros(b.shape, dtype=b.dtype)
|
||||
rho = inner(r, r)
|
||||
epsilon = np.max([0., 1e-5*np.sqrt(rho)])
|
||||
|
||||
# Make optimal step along search direction.
|
||||
q = A(p)
|
||||
gamma = inner(p, q)
|
||||
if gamma <= 0.0:
|
||||
raise ValueError("Operator A is not positive definite")
|
||||
alpha = rho/gamma
|
||||
x += alpha*p
|
||||
r -= alpha*q
|
||||
rho_prev, rho = rho, inner(r,r)
|
||||
beta = rho/rho_prev
|
||||
# Conjugate gradient iterations.
|
||||
beta = 0.0
|
||||
k = 0
|
||||
while (k <= iterations) and (np.sqrt(rho) > epsilon):
|
||||
if np.sqrt(rho) <= epsilon:
|
||||
print("Converged before maximum iteration.")
|
||||
break
|
||||
k += 1
|
||||
if k > iterations:
|
||||
print("Didn't converge before maximum iteration.")
|
||||
break
|
||||
|
||||
#Return normalized solution
|
||||
im_deconv = x/x.max()
|
||||
return im_deconv
|
||||
# Next search direction.
|
||||
if beta == 0.0:
|
||||
p = r
|
||||
else:
|
||||
p = r + beta*p
|
||||
|
||||
# Make optimal step along search direction.
|
||||
q = A(p)
|
||||
gamma = inner(p, q)
|
||||
if gamma <= 0.0:
|
||||
raise ValueError("Operator A is not positive definite")
|
||||
alpha = rho/gamma
|
||||
x += alpha*p
|
||||
r -= alpha*q
|
||||
rho_prev, rho = rho, inner(r, r)
|
||||
beta = rho/rho_prev
|
||||
|
||||
# Return normalized solution
|
||||
im_deconv = x/x.max()
|
||||
return im_deconv
|
||||
|
||||
|
||||
def deconvolve_im(image, psf, alpha=0.1, error=None, iterations=20, clip=True,
|
||||
filter_epsilon=None, algo='richardson'):
|
||||
"""
|
||||
Prepare an image for deconvolution using a chosen algorithm and return
|
||||
results.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A parameter value for numerous deconvolution algorithms.
|
||||
Defaults to 0.1
|
||||
error : numpy.ndarray, optional
|
||||
Known background noise on the inputed image. Will be used for weighted
|
||||
deconvolution. If None, all weights will be set to 1.
|
||||
Defaults to None.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
Defaults to 20.
|
||||
clip : boolean, optional
|
||||
If true, pixel value of the result above 1 or under -1 are thresholded
|
||||
for skimage pipeline compatibility.
|
||||
Defaults to True.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
Defaults to None.
|
||||
algo : str, optional
|
||||
Name of the deconvolution algorithm that will be used. Implemented
|
||||
algorithms are the following : 'Wiener', 'Van-Cittert', 'One Step Gradient',
|
||||
'Conjugate Gradient' and 'Richardson-Lucy'.
|
||||
Defaults to 'Richardson-Lucy'.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
# Normalize image to highest pixel value
|
||||
pxmax = image[np.isfinite(image)].max()
|
||||
if pxmax == 0.:
|
||||
raise ValueError("Invalid image")
|
||||
norm_image = image/pxmax
|
||||
"""
|
||||
Prepare an image for deconvolution using a chosen algorithm and return
|
||||
results.
|
||||
----------
|
||||
Inputs:
|
||||
image : numpy.ndarray
|
||||
Input degraded image (can be N dimensional) of floats.
|
||||
psf : numpy.ndarray
|
||||
The kernel of the point spread function. Must have shape less or equal to
|
||||
the image shape. If less, it will be zeropadded.
|
||||
alpha : float, optional
|
||||
A parameter value for numerous deconvolution algorithms.
|
||||
Defaults to 0.1
|
||||
error : numpy.ndarray, optional
|
||||
Known background noise on the inputed image. Will be used for weighted
|
||||
deconvolution. If None, all weights will be set to 1.
|
||||
Defaults to None.
|
||||
iterations : int, optional
|
||||
Number of iterations. This parameter plays the role of
|
||||
regularisation.
|
||||
Defaults to 20.
|
||||
clip : boolean, optional
|
||||
If true, pixel value of the result above 1 or under -1 are thresholded
|
||||
for skimage pipeline compatibility.
|
||||
Defaults to True.
|
||||
filter_epsilon: float, optional
|
||||
Value below which intermediate results become 0 to avoid division
|
||||
by small numbers.
|
||||
Defaults to None.
|
||||
algo : str, optional
|
||||
Name of the deconvolution algorithm that will be used. Implemented
|
||||
algorithms are the following : 'Wiener', 'Van-Cittert', 'One Step Gradient',
|
||||
'Conjugate Gradient' and 'Richardson-Lucy'.
|
||||
Defaults to 'Richardson-Lucy'.
|
||||
----------
|
||||
Returns:
|
||||
im_deconv : ndarray
|
||||
The deconvolved image.
|
||||
"""
|
||||
# Normalize image to highest pixel value
|
||||
pxmax = image[np.isfinite(image)].max()
|
||||
if pxmax == 0.:
|
||||
raise ValueError("Invalid image")
|
||||
norm_image = image/pxmax
|
||||
|
||||
# Deconvolve normalized image
|
||||
if algo.lower() in ['wiener','wiener simple']:
|
||||
norm_deconv = wiener(image=norm_image, psf=psf, alpha=alpha, clip=clip)
|
||||
elif algo.lower() in ['van-cittert','vancittert','cittert']:
|
||||
norm_deconv = van_cittert(image=norm_image, psf=psf, alpha=alpha,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
elif algo.lower() in ['1grad','one_step_grad','one step grad']:
|
||||
norm_deconv = one_step_gradient(image=norm_image, psf=psf,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
elif algo.lower() in ['conjgrad','conj_grad','conjugate gradient']:
|
||||
norm_deconv = conj_grad(image=norm_image, psf=psf, alpha=alpha,
|
||||
error=error, iterations=iterations)
|
||||
else: # Defaults to Richardson-Lucy
|
||||
norm_deconv = richardson_lucy(image=norm_image, psf=psf,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
# Deconvolve normalized image
|
||||
if algo.lower() in ['wiener', 'wiener simple']:
|
||||
norm_deconv = wiener(image=norm_image, psf=psf, alpha=alpha, clip=clip)
|
||||
elif algo.lower() in ['van-cittert', 'vancittert', 'cittert']:
|
||||
norm_deconv = van_cittert(image=norm_image, psf=psf, alpha=alpha,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
elif algo.lower() in ['1grad', 'one_step_grad', 'one step grad']:
|
||||
norm_deconv = one_step_gradient(image=norm_image, psf=psf,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
elif algo.lower() in ['conjgrad', 'conj_grad', 'conjugate gradient']:
|
||||
norm_deconv = conj_grad(image=norm_image, psf=psf, alpha=alpha,
|
||||
error=error, iterations=iterations)
|
||||
else: # Defaults to Richardson-Lucy
|
||||
norm_deconv = richardson_lucy(image=norm_image, psf=psf,
|
||||
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
|
||||
|
||||
# Output deconvolved image with original pxmax value
|
||||
im_deconv = pxmax*norm_deconv
|
||||
# Output deconvolved image with original pxmax value
|
||||
im_deconv = pxmax*norm_deconv
|
||||
|
||||
return im_deconv
|
||||
return im_deconv
|
||||
|
||||
@@ -15,9 +15,8 @@ import numpy as np
|
||||
from os.path import join as path_join
|
||||
from astropy.io import fits
|
||||
from astropy.wcs import WCS
|
||||
from lib.convex_hull import image_hull, clean_ROI
|
||||
from lib.convex_hull import clean_ROI
|
||||
from lib.plots import princ_angle
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
@@ -42,29 +41,29 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
"""
|
||||
data_array, headers = [], []
|
||||
for i in range(len(infiles)):
|
||||
with fits.open(path_join(data_folder,infiles[i])) as f:
|
||||
with fits.open(path_join(data_folder, infiles[i])) as f:
|
||||
headers.append(f[0].header)
|
||||
data_array.append(f[0].data)
|
||||
data_array = np.array(data_array,dtype=np.double)
|
||||
data_array = np.array(data_array, dtype=np.double)
|
||||
|
||||
# Prevent negative count value in imported data
|
||||
for i in range(len(data_array)):
|
||||
data_array[i][data_array[i] < 0.] = 0.
|
||||
|
||||
|
||||
# force WCS to convention PCi_ja unitary, cdelt in deg
|
||||
for header in headers:
|
||||
new_wcs = WCS(header).deepcopy()
|
||||
if new_wcs.wcs.has_cd() or (new_wcs.wcs.cdelt[:2] == np.array([1., 1.])).all():
|
||||
# Update WCS with relevant information
|
||||
if new_wcs.wcs.has_cd():
|
||||
old_cd = new_wcs.wcs.cd[:2,:2]
|
||||
old_cd = new_wcs.wcs.cd[:2, :2]
|
||||
del new_wcs.wcs.cd
|
||||
keys = list(new_wcs.to_header().keys())+['CD1_1','CD1_2','CD2_1','CD2_2']
|
||||
keys = list(new_wcs.to_header().keys())+['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']
|
||||
for key in keys:
|
||||
header.remove(key, ignore_missing=True)
|
||||
new_cdelt = np.linalg.eig(old_cd)[0]
|
||||
elif (new_wcs.wcs.cdelt == np.array([1., 1.])).all() and \
|
||||
(new_wcs.array_shape in [(512, 512),(1024,512),(512,1024),(1024,1024)]):
|
||||
(new_wcs.array_shape in [(512, 512), (1024, 512), (512, 1024), (1024, 1024)]):
|
||||
old_cd = new_wcs.wcs.pc
|
||||
new_wcs.wcs.pc = np.dot(old_cd, np.diag(1./new_cdelt))
|
||||
new_wcs.wcs.cdelt = new_cdelt
|
||||
@@ -73,14 +72,14 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
header['orientat'] = princ_angle(float(header['orientat']))
|
||||
|
||||
# force WCS for POL60 to have same pixel size as POL0 and POL120
|
||||
is_pol60 = np.array([head['filtnam1'].lower()=='pol60' for head in headers],dtype=bool)
|
||||
cdelt = np.round(np.array([WCS(head).wcs.cdelt for head in headers]),14)
|
||||
if np.unique(cdelt[np.logical_not(is_pol60)],axis=0).size!=2:
|
||||
print(np.unique(cdelt[np.logical_not(is_pol60)],axis=0))
|
||||
is_pol60 = np.array([head['filtnam1'].lower() == 'pol60' for head in headers], dtype=bool)
|
||||
cdelt = np.round(np.array([WCS(head).wcs.cdelt for head in headers]), 14)
|
||||
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
|
||||
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
|
||||
raise ValueError("Not all images have same pixel size")
|
||||
else:
|
||||
for i in np.arange(len(headers))[is_pol60]:
|
||||
headers[i]['cdelt1'],headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)],axis=0)[0]
|
||||
headers[i]['cdelt1'], headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
|
||||
|
||||
if compute_flux:
|
||||
for i in range(len(infiles)):
|
||||
@@ -91,8 +90,8 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
|
||||
|
||||
def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
||||
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
|
||||
return_hdul=False):
|
||||
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
|
||||
return_hdul=False):
|
||||
"""
|
||||
Save computed polarimetry parameters to a single fits file,
|
||||
updating header accordingly.
|
||||
@@ -127,12 +126,12 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
||||
informations (WCS, orientation, data_type).
|
||||
Only returned if return_hdul is True.
|
||||
"""
|
||||
#Create new WCS object given the modified images
|
||||
# Create new WCS object given the modified images
|
||||
ref_header = headers[0]
|
||||
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
||||
new_wcs = WCS(ref_header).deepcopy()
|
||||
|
||||
if data_mask.shape != (1,1):
|
||||
|
||||
if data_mask.shape != (1, 1):
|
||||
vertex = clean_ROI(data_mask)
|
||||
shape = vertex[1::2]-vertex[0::2]
|
||||
new_wcs.array_shape = shape
|
||||
@@ -153,56 +152,56 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
||||
header['PA_int'] = (ref_header['PA_int'], 'Integrated polarisation angle')
|
||||
header['PA_int_err'] = (ref_header['PA_int_err'], 'Integrated polarisation angle error')
|
||||
|
||||
#Crop Data to mask
|
||||
if data_mask.shape != (1,1):
|
||||
I_stokes = I_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
Q_stokes = Q_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
U_stokes = U_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
P = P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
debiased_P = debiased_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
s_P = s_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
s_P_P = s_P_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
PA = PA[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
s_PA = s_PA[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
s_PA_P = s_PA_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
|
||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2],*shape[::-1]))
|
||||
# Crop Data to mask
|
||||
if data_mask.shape != (1, 1):
|
||||
I_stokes = I_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
Q_stokes = Q_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
U_stokes = U_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
P = P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
debiased_P = debiased_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_P = s_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_P_P = s_P_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
PA = PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_PA = s_PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_PA_P = s_PA_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
|
||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
|
||||
for i in range(3):
|
||||
for j in range(3):
|
||||
Stokes_cov[i,j][(1-data_mask).astype(bool)] = 0.
|
||||
new_Stokes_cov[i,j] = Stokes_cov[i,j][vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
Stokes_cov[i, j][(1-data_mask).astype(bool)] = 0.
|
||||
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
Stokes_cov = new_Stokes_cov
|
||||
|
||||
data_mask = data_mask[vertex[2]:vertex[3],vertex[0]:vertex[1]]
|
||||
|
||||
data_mask = data_mask[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
data_mask = data_mask.astype(float, copy=False)
|
||||
|
||||
#Create HDUList object
|
||||
# Create HDUList object
|
||||
hdul = fits.HDUList([])
|
||||
|
||||
#Add I_stokes as PrimaryHDU
|
||||
# Add I_stokes as PrimaryHDU
|
||||
header['datatype'] = ('I_stokes', 'type of data stored in the HDU')
|
||||
I_stokes[(1-data_mask).astype(bool)] = 0.
|
||||
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
|
||||
primary_hdu.name = 'I_stokes'
|
||||
hdul.append(primary_hdu)
|
||||
|
||||
#Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
|
||||
for data, name in [[Q_stokes,'Q_stokes'],[U_stokes,'U_stokes'],
|
||||
[Stokes_cov,'IQU_cov_matrix'],[P, 'Pol_deg'],
|
||||
[debiased_P, 'Pol_deg_debiased'],[s_P, 'Pol_deg_err'],
|
||||
[s_P_P, 'Pol_deg_err_Poisson_noise'],[PA, 'Pol_ang'],
|
||||
[s_PA, 'Pol_ang_err'],[s_PA_P, 'Pol_ang_err_Poisson_noise'],
|
||||
[data_mask, 'Data_mask']]:
|
||||
# Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
|
||||
for data, name in [[Q_stokes, 'Q_stokes'], [U_stokes, 'U_stokes'],
|
||||
[Stokes_cov, 'IQU_cov_matrix'], [P, 'Pol_deg'],
|
||||
[debiased_P, 'Pol_deg_debiased'], [s_P, 'Pol_deg_err'],
|
||||
[s_P_P, 'Pol_deg_err_Poisson_noise'], [PA, 'Pol_ang'],
|
||||
[s_PA, 'Pol_ang_err'], [s_PA_P, 'Pol_ang_err_Poisson_noise'],
|
||||
[data_mask, 'Data_mask']]:
|
||||
hdu_header = header.copy()
|
||||
hdu_header['datatype'] = name
|
||||
if not name == 'IQU_cov_matrix':
|
||||
data[(1-data_mask).astype(bool)] = 0.
|
||||
hdu = fits.ImageHDU(data=data,header=hdu_header)
|
||||
hdu = fits.ImageHDU(data=data, header=hdu_header)
|
||||
hdu.name = name
|
||||
hdul.append(hdu)
|
||||
|
||||
#Save fits file to designated filepath
|
||||
hdul.writeto(path_join(data_folder,filename+".fits"), overwrite=True)
|
||||
# Save fits file to designated filepath
|
||||
hdul.writeto(path_join(data_folder, filename+".fits"), overwrite=True)
|
||||
|
||||
if return_hdul:
|
||||
return hdul
|
||||
|
||||
1097
src/lib/plots.py
1097
src/lib/plots.py
File diff suppressed because it is too large
Load Diff
@@ -17,17 +17,20 @@ def divide_proposal(products):
|
||||
Divide observation in proposals by time or filter
|
||||
"""
|
||||
for pid in np.unique(products['Proposal ID']):
|
||||
obs = products[products['Proposal ID']==pid].copy()
|
||||
close_date = np.unique(np.array([TimeDelta(np.abs(Time(obs['Start']).unix-date.unix),format='sec') < 7.*u.d for date in obs['Start']], dtype=bool), axis=0)
|
||||
if len(close_date)>1:
|
||||
obs = products[products['Proposal ID'] == pid].copy()
|
||||
close_date = np.unique(np.array([TimeDelta(np.abs(Time(obs['Start']).unix-date.unix), format='sec')
|
||||
< 7.*u.d for date in obs['Start']], dtype=bool), axis=0)
|
||||
if len(close_date) > 1:
|
||||
for date in close_date:
|
||||
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][date]],axis=0)] = "_".join([obs['Proposal ID'][date][0],str(obs['Start'][date][0])[:10]])
|
||||
products['Proposal ID'][np.any([products['Dataset'] == dataset for dataset in obs['Dataset'][date]], axis=0)
|
||||
] = "_".join([obs['Proposal ID'][date][0], str(obs['Start'][date][0])[:10]])
|
||||
for pid in np.unique(products['Proposal ID']):
|
||||
obs = products[products['Proposal ID']==pid].copy()
|
||||
same_filt = np.unique(np.array(np.sum([obs['Filters'][:,1:]==filt[1:] for filt in obs['Filters']],axis=2)<3,dtype=bool),axis=0)
|
||||
if len(same_filt)>1:
|
||||
obs = products[products['Proposal ID'] == pid].copy()
|
||||
same_filt = np.unique(np.array(np.sum([obs['Filters'][:, 1:] == filt[1:] for filt in obs['Filters']], axis=2) < 3, dtype=bool), axis=0)
|
||||
if len(same_filt) > 1:
|
||||
for filt in same_filt:
|
||||
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][filt]],axis=0)] = "_".join([obs['Proposal ID'][filt][0],"_".join([fi for fi in obs['Filters'][filt][0][1:] if fi[:-1]!="CLEAR"])])
|
||||
products['Proposal ID'][np.any([products['Dataset'] == dataset for dataset in obs['Dataset'][filt]], axis=0)] = "_".join(
|
||||
[obs['Proposal ID'][filt][0], "_".join([fi for fi in obs['Filters'][filt][0][1:] if fi[:-1] != "CLEAR"])])
|
||||
return products
|
||||
|
||||
|
||||
@@ -78,22 +81,22 @@ def get_product_list(target=None, proposal_id=None):
|
||||
|
||||
for c, n_c in zip(select_cols, cols):
|
||||
results.rename_column(c, n_c)
|
||||
results['Proposal ID'] = Column(results['Proposal ID'],dtype='U35')
|
||||
results['Filters'] = Column(np.array([filt.split(";") for filt in results['Filters']],dtype=str))
|
||||
results['Proposal ID'] = Column(results['Proposal ID'], dtype='U35')
|
||||
results['Filters'] = Column(np.array([filt.split(";") for filt in results['Filters']], dtype=str))
|
||||
results['Start'] = Column(Time(results['Start']))
|
||||
results['Stop'] = Column(Time(results['Stop']))
|
||||
|
||||
results = divide_proposal(results)
|
||||
obs = results.copy()
|
||||
|
||||
### Remove single observations for which a FIND filter is used
|
||||
to_remove=[]
|
||||
# Remove single observations for which a FIND filter is used
|
||||
to_remove = []
|
||||
for i in range(len(obs)):
|
||||
if "F1ND" in obs[i]['Filters']:
|
||||
to_remove.append(i)
|
||||
obs.remove_rows(to_remove)
|
||||
### Remove observations for which a polarization filter is missing
|
||||
polfilt = {"POL0":0,"POL60":1,"POL120":2}
|
||||
# Remove observations for which a polarization filter is missing
|
||||
polfilt = {"POL0": 0, "POL60": 1, "POL120": 2}
|
||||
for pid in np.unique(obs['Proposal ID']):
|
||||
used_pol = np.zeros(3)
|
||||
for dataset in obs[obs['Proposal ID'] == pid]:
|
||||
@@ -102,26 +105,26 @@ def get_product_list(target=None, proposal_id=None):
|
||||
obs.remove_rows(np.arange(len(obs))[obs['Proposal ID'] == pid])
|
||||
|
||||
tab = unique(obs, ['Target name', 'Proposal ID'])
|
||||
obs["Obs"] = [np.argmax(np.logical_and(tab['Proposal ID']==data['Proposal ID'],tab['Target name']==data['Target name']))+1 for data in obs]
|
||||
obs["Obs"] = [np.argmax(np.logical_and(tab['Proposal ID'] == data['Proposal ID'], tab['Target name'] == data['Target name']))+1 for data in obs]
|
||||
try:
|
||||
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument",
|
||||
"Size", "Target name", "Proposal ID", "PI last name"]], 'Obs')
|
||||
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument", "Size", "Target name", "Proposal ID", "PI last name"]], 'Obs')
|
||||
except IndexError:
|
||||
raise ValueError(
|
||||
"There is no observation with POL0, POL60 and POL120 for {0:s} in HST/FOC Legacy Archive".format(target))
|
||||
|
||||
b = np.zeros(len(results), dtype=bool)
|
||||
if not proposal_id is None and str(proposal_id) in obs['Proposal ID']:
|
||||
if proposal_id is not None and str(proposal_id) in obs['Proposal ID']:
|
||||
b[results['Proposal ID'] == str(proposal_id)] = True
|
||||
else:
|
||||
n_obs.pprint(len(n_obs)+2)
|
||||
a = [np.array(i.split(":"), dtype=str) for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(',')]
|
||||
if a[0][0]=='':
|
||||
a = [np.array(i.split(":"), dtype=str)
|
||||
for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(',')]
|
||||
if a[0][0] == '':
|
||||
a = [[1]]
|
||||
if a[0][0] in ['a','all','*']:
|
||||
b = np.ones(len(results),dtype=bool)
|
||||
if a[0][0] in ['a', 'all', '*']:
|
||||
b = np.ones(len(results), dtype=bool)
|
||||
else:
|
||||
a = [np.array(i,dtype=int) for i in a]
|
||||
a = [np.array(i, dtype=int) for i in a]
|
||||
for i in a:
|
||||
if len(i) > 1:
|
||||
for j in range(i[0], i[1]+1):
|
||||
@@ -135,19 +138,19 @@ def get_product_list(target=None, proposal_id=None):
|
||||
dataproduct_type=['image'],
|
||||
calib_level=[2],
|
||||
description="DADS C0F file - Calibrated exposure WFPC/WFPC2/FOC/FOS/GHRS/HSP")
|
||||
products['proposal_id'] = Column(products['proposal_id'],dtype='U35')
|
||||
products['proposal_id'] = Column(products['proposal_id'], dtype='U35')
|
||||
products['target_name'] = Column(observations['target_name'])
|
||||
|
||||
|
||||
for prod in products:
|
||||
prod['proposal_id'] = results['Proposal ID'][results['Dataset']==prod['productFilename'][:len(results['Dataset'][0])].upper()][0]
|
||||
|
||||
prod['proposal_id'] = results['Proposal ID'][results['Dataset'] == prod['productFilename'][:len(results['Dataset'][0])].upper()][0]
|
||||
|
||||
for prod in products:
|
||||
prod['target_name'] = observations['target_name'][observations['obsid']==prod['obsID']][0]
|
||||
prod['target_name'] = observations['target_name'][observations['obsid'] == prod['obsID']][0]
|
||||
tab = unique(products, ['target_name', 'proposal_id'])
|
||||
if len(tab)>1 and np.all(tab['target_name']==tab['target_name'][0]):
|
||||
if len(tab) > 1 and np.all(tab['target_name'] == tab['target_name'][0]):
|
||||
target = tab['target_name'][0]
|
||||
|
||||
products["Obs"] = [np.argmax(np.logical_and(tab['proposal_id']==data['proposal_id'],tab['target_name']==data['target_name']))+1 for data in products]
|
||||
|
||||
products["Obs"] = [np.argmax(np.logical_and(tab['proposal_id'] == data['proposal_id'], tab['target_name'] == data['target_name']))+1 for data in products]
|
||||
return target, products
|
||||
|
||||
|
||||
@@ -155,17 +158,17 @@ def retrieve_products(target=None, proposal_id=None, output_dir='./data'):
|
||||
"""
|
||||
Given a target name and a proposal_id, create the local directories and retrieve the fits files from the MAST Archive
|
||||
"""
|
||||
target, products = get_product_list(target=target,proposal_id=proposal_id)
|
||||
target, products = get_product_list(target=target, proposal_id=proposal_id)
|
||||
prodpaths = []
|
||||
data_dir = path_join(output_dir, target)
|
||||
# data_dir = path_join(output_dir, target)
|
||||
out = ""
|
||||
for obs in unique(products,'Obs'):
|
||||
for obs in unique(products, 'Obs'):
|
||||
filepaths = []
|
||||
#obs_dir = path_join(data_dir, obs['prodposal_id'])
|
||||
#if obs['target_name']!=target:
|
||||
# obs_dir = path_join(data_dir, obs['prodposal_id'])
|
||||
# if obs['target_name']!=target:
|
||||
obs_dir = path_join(path_join(output_dir, target), obs['proposal_id'])
|
||||
if not path_exists(obs_dir):
|
||||
system("mkdir -p {0:s} {1:s}".format(obs_dir,obs_dir.replace("data","plots")))
|
||||
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
|
||||
for file in products['productFilename'][products['Obs'] == obs['Obs']]:
|
||||
fpath = path_join(obs_dir, file)
|
||||
if not path_exists(fpath):
|
||||
@@ -173,8 +176,8 @@ def retrieve_products(target=None, proposal_id=None, output_dir='./data'):
|
||||
products['dataURI'][products['productFilename'] == file][0], local_path=fpath)[0])
|
||||
else:
|
||||
out += "{0:s} : Exists\n".format(file)
|
||||
filepaths.append([obs_dir,file])
|
||||
prodpaths.append(np.array(filepaths,dtype=str))
|
||||
filepaths.append([obs_dir, file])
|
||||
prodpaths.append(np.array(filepaths, dtype=str))
|
||||
|
||||
return target, prodpaths
|
||||
|
||||
@@ -183,12 +186,12 @@ if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='Query MAST for target products')
|
||||
parser.add_argument('-t','--target', metavar='targetname', required=False,
|
||||
parser.add_argument('-t', '--target', metavar='targetname', required=False,
|
||||
help='the name of the target', type=str, default=None)
|
||||
parser.add_argument('-p','--proposal_id', metavar='proposal_id', required=False,
|
||||
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False,
|
||||
help='the proposal id of the data products', type=int, default=None)
|
||||
parser.add_argument('-o','--output_dir', metavar='directory_path', required=False,
|
||||
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
|
||||
help='output directory path for the data products', type=str, default="./data")
|
||||
args = parser.parse_args()
|
||||
prodpaths = retrieve_products(target=args.target, proposal_id=args.proposal_id)
|
||||
print(prodpaths)
|
||||
print(prodpaths)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -7,65 +7,66 @@ from lib.plots import overplot_radio, overplot_pol, align_pol
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
Stokes_UV = fits.open("./data/IC5063/5918/IC5063_FOC_b0.10arcsec_c0.20arcsec.fits")
|
||||
#Stokes_18GHz = fits.open("./data/IC5063/radio/IC5063_18GHz.fits")
|
||||
#Stokes_24GHz = fits.open("./data/IC5063/radio/IC5063_24GHz.fits")
|
||||
#Stokes_103GHz = fits.open("./data/IC5063/radio/IC5063_103GHz.fits")
|
||||
#Stokes_229GHz = fits.open("./data/IC5063/radio/IC5063_229GHz.fits")
|
||||
#Stokes_357GHz = fits.open("./data/IC5063/radio/IC5063_357GHz.fits")
|
||||
#Stokes_S2 = fits.open("./data/IC5063/POLARIZATION_COMPARISON/S2_rot_crop.fits")
|
||||
# Stokes_18GHz = fits.open("./data/IC5063/radio/IC5063_18GHz.fits")
|
||||
# Stokes_24GHz = fits.open("./data/IC5063/radio/IC5063_24GHz.fits")
|
||||
# Stokes_103GHz = fits.open("./data/IC5063/radio/IC5063_103GHz.fits")
|
||||
# Stokes_229GHz = fits.open("./data/IC5063/radio/IC5063_229GHz.fits")
|
||||
# Stokes_357GHz = fits.open("./data/IC5063/radio/IC5063_357GHz.fits")
|
||||
# Stokes_S2 = fits.open("./data/IC5063/POLARIZATION_COMPARISON/S2_rot_crop.fits")
|
||||
Stokes_IR = fits.open("./data/IC5063/IR/u2e65g01t_c0f_rot.fits")
|
||||
|
||||
##levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
|
||||
#levelsMorganti = np.logspace(0.,1.97,5)/100.
|
||||
# levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
|
||||
# levelsMorganti = np.logspace(0.,1.97,5)/100.
|
||||
#
|
||||
#levels18GHz = levelsMorganti*Stokes_18GHz[0].data.max()
|
||||
#A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
#A.plot(levels=levels18GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/18GHz_overplot_forced.pdf',vec_scale=None)
|
||||
# levels18GHz = levelsMorganti*Stokes_18GHz[0].data.max()
|
||||
# A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
# A.plot(levels=levels18GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/18GHz_overplot_forced.pdf',vec_scale=None)
|
||||
##
|
||||
#levels24GHz = levelsMorganti*Stokes_24GHz[0].data.max()
|
||||
#B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
#B.plot(levels=levels24GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/24GHz_overplot_forced.pdf',vec_scale=None)
|
||||
# levels24GHz = levelsMorganti*Stokes_24GHz[0].data.max()
|
||||
# B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
# B.plot(levels=levels24GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/24GHz_overplot_forced.pdf',vec_scale=None)
|
||||
##
|
||||
#levels103GHz = levelsMorganti*Stokes_103GHz[0].data.max()
|
||||
#C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
#C.plot(levels=levels103GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/103GHz_overplot_forced.pdf',vec_scale=None)
|
||||
# levels103GHz = levelsMorganti*Stokes_103GHz[0].data.max()
|
||||
# C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
# C.plot(levels=levels103GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/103GHz_overplot_forced.pdf',vec_scale=None)
|
||||
##
|
||||
#levels229GHz = levelsMorganti*Stokes_229GHz[0].data.max()
|
||||
#D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
#D.plot(levels=levels229GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/229GHz_overplot_forced.pdf',vec_scale=None)
|
||||
# levels229GHz = levelsMorganti*Stokes_229GHz[0].data.max()
|
||||
# D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
# D.plot(levels=levels229GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/229GHz_overplot_forced.pdf',vec_scale=None)
|
||||
##
|
||||
#levels357GHz = levelsMorganti*Stokes_357GHz[0].data.max()
|
||||
#E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
#E.plot(levels=levels357GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/357GHz_overplot_forced.pdf',vec_scale=None)
|
||||
# levels357GHz = levelsMorganti*Stokes_357GHz[0].data.max()
|
||||
# E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
# E.plot(levels=levels357GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/357GHz_overplot_forced.pdf',vec_scale=None)
|
||||
##
|
||||
#F = overplot_pol(Stokes_UV, Stokes_S2)
|
||||
#F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='./plots/IC5063/S2_overplot_forced.pdf', norm=LogNorm(vmin=5e-20,vmax=5e-18))
|
||||
# F = overplot_pol(Stokes_UV, Stokes_S2)
|
||||
# F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='./plots/IC5063/S2_overplot_forced.pdf', norm=LogNorm(vmin=5e-20,vmax=5e-18))
|
||||
|
||||
G = overplot_pol(Stokes_UV, Stokes_IR, cmap='inferno')
|
||||
G.plot(SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/IR_overplot_forced.pdf',vec_scale=None,norm=LogNorm(Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']/1e3,Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']),cmap='inferno_r')
|
||||
G.plot(SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/IR_overplot_forced.pdf', vec_scale=None,
|
||||
norm=LogNorm(Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']/1e3, Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']), cmap='inferno_r')
|
||||
|
||||
#data_folder1 = "./data/M87/POS1/"
|
||||
#plots_folder1 = "./plots/M87/POS1/"
|
||||
#basename1 = "M87_020_log"
|
||||
#M87_1_95 = fits.open(data_folder1+"M87_POS1_1995_FOC_combine_FWHM020.fits")
|
||||
#M87_1_96 = fits.open(data_folder1+"M87_POS1_1996_FOC_combine_FWHM020.fits")
|
||||
#M87_1_97 = fits.open(data_folder1+"M87_POS1_1997_FOC_combine_FWHM020.fits")
|
||||
#M87_1_98 = fits.open(data_folder1+"M87_POS1_1998_FOC_combine_FWHM020.fits")
|
||||
#M87_1_99 = fits.open(data_folder1+"M87_POS1_1999_FOC_combine_FWHM020.fits")
|
||||
# data_folder1 = "./data/M87/POS1/"
|
||||
# plots_folder1 = "./plots/M87/POS1/"
|
||||
# basename1 = "M87_020_log"
|
||||
# M87_1_95 = fits.open(data_folder1+"M87_POS1_1995_FOC_combine_FWHM020.fits")
|
||||
# M87_1_96 = fits.open(data_folder1+"M87_POS1_1996_FOC_combine_FWHM020.fits")
|
||||
# M87_1_97 = fits.open(data_folder1+"M87_POS1_1997_FOC_combine_FWHM020.fits")
|
||||
# M87_1_98 = fits.open(data_folder1+"M87_POS1_1998_FOC_combine_FWHM020.fits")
|
||||
# M87_1_99 = fits.open(data_folder1+"M87_POS1_1999_FOC_combine_FWHM020.fits")
|
||||
|
||||
#H = align_pol(np.array([M87_1_95,M87_1_96,M87_1_97,M87_1_98,M87_1_99]), norm=LogNorm())
|
||||
#H.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder1+'animated_loop/'+basename1, norm=LogNorm())
|
||||
#command("convert -delay 50 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder1, basename1))
|
||||
# H = align_pol(np.array([M87_1_95,M87_1_96,M87_1_97,M87_1_98,M87_1_99]), norm=LogNorm())
|
||||
# H.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder1+'animated_loop/'+basename1, norm=LogNorm())
|
||||
# command("convert -delay 50 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder1, basename1))
|
||||
|
||||
#data_folder3 = "./data/M87/POS3/"
|
||||
#plots_folder3 = "./plots/M87/POS3/"
|
||||
#basename3 = "M87_020_log"
|
||||
#M87_3_95 = fits.open(data_folder3+"M87_POS3_1995_FOC_combine_FWHM020.fits")
|
||||
#M87_3_96 = fits.open(data_folder3+"M87_POS3_1996_FOC_combine_FWHM020.fits")
|
||||
#M87_3_97 = fits.open(data_folder3+"M87_POS3_1997_FOC_combine_FWHM020.fits")
|
||||
#M87_3_98 = fits.open(data_folder3+"M87_POS3_1998_FOC_combine_FWHM020.fits")
|
||||
#M87_3_99 = fits.open(data_folder3+"M87_POS3_1999_FOC_combine_FWHM020.fits")
|
||||
# data_folder3 = "./data/M87/POS3/"
|
||||
# plots_folder3 = "./plots/M87/POS3/"
|
||||
# basename3 = "M87_020_log"
|
||||
# M87_3_95 = fits.open(data_folder3+"M87_POS3_1995_FOC_combine_FWHM020.fits")
|
||||
# M87_3_96 = fits.open(data_folder3+"M87_POS3_1996_FOC_combine_FWHM020.fits")
|
||||
# M87_3_97 = fits.open(data_folder3+"M87_POS3_1997_FOC_combine_FWHM020.fits")
|
||||
# M87_3_98 = fits.open(data_folder3+"M87_POS3_1998_FOC_combine_FWHM020.fits")
|
||||
# M87_3_99 = fits.open(data_folder3+"M87_POS3_1999_FOC_combine_FWHM020.fits")
|
||||
|
||||
#I = align_pol(np.array([M87_3_95,M87_3_96,M87_3_97,M87_3_98,M87_3_99]), norm=LogNorm())
|
||||
#I.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder3+'animated_loop/'+basename3, norm=LogNorm())
|
||||
#command("convert -delay 20 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder3, basename3))
|
||||
# I = align_pol(np.array([M87_3_95,M87_3_96,M87_3_97,M87_3_98,M87_3_99]), norm=LogNorm())
|
||||
# I.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder3+'animated_loop/'+basename3, norm=LogNorm())
|
||||
# command("convert -delay 20 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder3, basename3))
|
||||
|
||||
@@ -1,23 +1,23 @@
|
||||
#!/usr/bin/python3
|
||||
from astropy.io import fits
|
||||
import numpy as np
|
||||
from lib.plots import overplot_chandra, overplot_pol, align_pol
|
||||
from lib.plots import overplot_chandra, overplot_pol
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
Stokes_UV = fits.open("./data/MRK463E/5960/MRK463E_FOC_b0.05arcsec_c0.10arcsec.fits")
|
||||
Stokes_IR = fits.open("./data/MRK463E/WFPC2/IR_rot_crop.fits")
|
||||
Stokes_Xr = fits.open("./data/MRK463E/Chandra/4913/primary/acisf04913N004_cntr_img2.fits")
|
||||
|
||||
levels = np.geomspace(1.,99.,10)
|
||||
levels = np.geomspace(1., 99., 10)
|
||||
|
||||
#A = overplot_chandra(Stokes_UV, Stokes_Xr)
|
||||
#A.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot.pdf')
|
||||
# A = overplot_chandra(Stokes_UV, Stokes_Xr)
|
||||
# A.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot.pdf')
|
||||
|
||||
#B = overplot_chandra(Stokes_UV, Stokes_Xr, norm=LogNorm())
|
||||
#B.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot_forced.pdf')
|
||||
B = overplot_chandra(Stokes_UV, Stokes_Xr, norm=LogNorm())
|
||||
B.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot_forced.pdf')
|
||||
|
||||
#C = overplot_pol(Stokes_UV, Stokes_IR)
|
||||
#C.plot(SNRp_cut=3.0, SNRi_cut=20.0, savename='./plots/MRK463E/IR_overplot.pdf')
|
||||
# C = overplot_pol(Stokes_UV, Stokes_IR)
|
||||
# C.plot(SNRp_cut=3.0, SNRi_cut=20.0, savename='./plots/MRK463E/IR_overplot.pdf')
|
||||
|
||||
D = overplot_pol(Stokes_UV, Stokes_IR, norm=LogNorm())
|
||||
D.plot(SNRp_cut=3.0, SNRi_cut=30.0, vec_scale=2, norm=LogNorm(1e-18,1e-15), savename='./plots/MRK463E/IR_overplot_forced.pdf')
|
||||
D.plot(SNRp_cut=3.0, SNRi_cut=30.0, vec_scale=2, norm=LogNorm(1e-18, 1e-15), savename='./plots/MRK463E/IR_overplot_forced.pdf')
|
||||
|
||||
Reference in New Issue
Block a user