modify files to comply with pep8 format

This commit is contained in:
2024-02-26 16:30:10 +01:00
parent d2b59cf05a
commit 893cf339c7
12 changed files with 1751 additions and 1659 deletions

View File

@@ -1,4 +1,4 @@
# !/usr/bin/python3
#!/usr/bin/python3
# -*- coding:utf-8 -*-
"""
Main script where are progressively added the steps for the FOC pipeline reduction.
@@ -15,8 +15,8 @@ from matplotlib.colors import LogNorm
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=0, interactive=0):
## Reduction parameters
# Deconvolution
# Reduction parameters
# Deconvolution
deconvolve = False
if deconvolve:
# from lib.deconvolve import from_file_psf
@@ -28,38 +28,38 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
iterations = 5
algo = "richardson"
# Initial crop
# Initial crop
display_crop = False
# Background estimation
# Background estimation
error_sub_type = 'freedman-diaconis' # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 1.00
display_error = False
# Data binning
# Data binning
rebin = True
pxsize = 0.10
px_scale = 'arcsec' # pixel, arcsec or full
rebin_operation = 'sum' # sum or average
# Alignement
# Alignement
align_center = 'center' # If None will not align the images
display_bkg = False
display_align = False
display_data = False
# Smoothing
# Smoothing
smoothing_function = 'combine' # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = 0.10 # If None, no smoothing is done
smoothing_scale = 'arcsec' # pixel or arcsec
# Rotation
# Rotation
rotate_data = False # rotation to North convention can give erroneous results
rotate_stokes = True
# Final crop
# crop = False #Crop to desired ROI
# interactive = False #Whether to output to intercative analysis tool
# Final crop
crop = False # Crop to desired ROI
interactive = False # Whether to output to intercative analysis tool
# Polarization map output
SNRp_cut = 3. # P measurments with SNR>3
@@ -68,10 +68,10 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
vec_scale = 3
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
##### Pipeline start
## Step 1:
# Pipeline start
# Step 1:
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
if not infiles is None:
if infiles is not None:
prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str)
obs_dir = "/".join(infiles[0].split("/")[:-1])
if not path_exists(obs_dir):
@@ -100,12 +100,14 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
else:
figtype = "full"
if smoothing_FWHM is not None:
figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]), "{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations
figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]),
"{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations
if align_center is None:
figtype += "_not_aligned"
# Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0.,
inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve:
@@ -119,16 +121,16 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "bkg"]), plots_folder=plots_folder)
# Align and rescale images with oversampling.
data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False)
data_array, error_array, headers, data_mask = proj_red.align_data( data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False)
if display_align:
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, str(align_center)]), plots_folder=plots_folder)
# Rebin data to desired pixel size.
if rebin:
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array( data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
# Rotate data to have North up
# Rotate data to have North up
if rotate_data:
data_mask = np.ones(data_array.shape[1:]).astype(bool)
alpha = headers[0]['orientat']
@@ -139,34 +141,34 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "rebin"]), plots_folder=plots_folder)
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1']==head['filtnam1'] for h in headers], dtype=bool)].mean())**2/np.sum([h['filtnam1']==head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1'] == head['filtnam1'] for h in headers], dtype=bool)].mean()) ** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
## Step 2:
# Compute Stokes I, Q, U with smoothed polarized images
# SMOOTHING DISCUSSION :
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
# Step 2:
# Compute Stokes I, Q, U with smoothed polarized images
# SMOOTHING DISCUSSION :
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
## Step 3:
# Rotate images to have North up
# Step 3:
# Rotate images to have North up
if rotate_stokes:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
# Compute polarimetric parameters (polarisation degree and angle).
# Compute polarimetric parameters (polarisation degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
## Step 4:
# Save image to FITS.
# Step 4:
# Save image to FITS.
Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, "_".join([figname, figtype]), data_folder=data_folder, return_hdul=True)
data_mask = Stokes_test[-1].data.astype(bool)
## Step 5:
# crop to desired region of interest (roi)
# Step 5:
# crop to desired region of interest (roi)
if crop:
figtype += "_crop"
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test), norm=LogNorm())
@@ -183,19 +185,29 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(PA_bkg[0, 0], np.ceil(s_PA_bkg[0, 0]*10.)/10.))
# Plot polarisation map (Background is either total Flux, Polarization degree or Polarization degree error).
if px_scale.lower() not in ['full', 'integrate'] and not interactive:
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype]), plots_folder=plots_folder)
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I"]), plots_folder=plots_folder, display='Intensity')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P"]), plots_folder=plots_folder, display='Pol_deg')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "PA"]), plots_folder=plots_folder, display='Pol_ang')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I_err"]), plots_folder=plots_folder, display='I_err')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRi"]), plots_folder=plots_folder, display='SNRi')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRp"]), plots_folder=plots_folder, display='SNRp')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype]), plots_folder=plots_folder)
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "I"]), plots_folder=plots_folder, display='Intensity')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "P"]), plots_folder=plots_folder, display='Pol_deg')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "PA"]), plots_folder=plots_folder, display='Pol_ang')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "I_err"]), plots_folder=plots_folder, display='I_err')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRi"]), plots_folder=plots_folder, display='SNRi')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRp"]), plots_folder=plots_folder, display='SNRp')
elif not interactive:
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename="_".join([figname, figtype]), plots_folder=plots_folder, display='integrate')
proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
savename="_".join([figname, figtype]), plots_folder=plots_folder, display='integrate')
elif px_scale.lower() not in ['full', 'integrate']:
pol_map = proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
return 0
@@ -204,18 +216,15 @@ if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Query MAST for target products')
parser.add_argument('-t', '--target', metavar='targetname', required=False,
help='the name of the target', type=str, default=None)
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False,
help='the proposal id of the data products', type=int, default=None)
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*',
help='the full or relative path to the data products', default=None)
parser.add_argument('-t', '--target', metavar='targetname', required=False, help='the name of the target', type=str, default=None)
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False, help='the proposal id of the data products', type=int, default=None)
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*', help='the full or relative path to the data products', default=None)
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
help='output directory path for the data products', type=str, default="./data")
parser.add_argument('-c', '--crop', metavar='crop_boolean', required=False,
help='whether to crop the analysis region', type=int, default=0)
parser.add_argument('-c', '--crop', metavar='crop_boolean', required=False, help='whether to crop the analysis region', type=int, default=0)
parser.add_argument('-i', '--interactive', metavar='interactive_boolean', required=False,
help='whether to output to the interactive analysis tool', type=int, default=0)
args = parser.parse_args()
exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files, output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files,
output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
print("Finished with ExitCode: ", exitcode)

View File

@@ -4,7 +4,7 @@ from sys import argv
arglist = argv[1:]
options = "hf:p:i:l:"
long_options = ["help","fits=","snrp=","snri=","lim="]
long_options = ["help", "fits=", "snrp=", "snri=", "lim="]
fits_path = None
SNRp_cut, SNRi_cut = 3, 30
@@ -28,12 +28,12 @@ try:
except get_error as err:
print(str(err))
if not fits_path is None:
if fits_path is not None:
from astropy.io import fits
from lib.plots import pol_map
Stokes_UV = fits.open(fits_path)
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,flux_lim=flux_lim)
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
else:
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut> -l <flux_lim>")

View File

@@ -9,7 +9,6 @@ prototypes :
- bkg_mini(data, error, mask, headers, sub_shape, display, savename, plots_folder) -> n_data_array, n_error_array, headers, background)
Compute the error (noise) of the input array by looking at the sub-region of minimal flux in every image and of shape sub_shape.
"""
import sys
from os.path import join as path_join
from copy import deepcopy
import numpy as np
@@ -21,36 +20,40 @@ from datetime import datetime
from lib.plots import plot_obs
from scipy.optimize import curve_fit
def gauss(x, *p):
N, mu, sigma = p
return N*np.exp(-(x-mu)**2/(2.*sigma**2))
def gausspol(x, *p):
N, mu, sigma, a, b, c, d = p
return N*np.exp(-(x-mu)**2/(2.*sigma**2)) + a*np.log(x) + b/x + c*x + d
def bin_centers(edges):
return (edges[1:]+edges[:-1])/2.
def display_bkg(data, background, std_bkg, headers, histograms=None, binning=None, coeff=None, rectangle=None, savename=None, plots_folder="./"):
plt.rcParams.update({'font.size': 15})
convert_flux = np.array([head['photflam'] for head in headers])
date_time = np.array([headers[i]['date-obs']+';'+headers[i]['time-obs']
for i in range(len(headers))])
date_time = np.array([datetime.strptime(d,'%Y-%m-%d;%H:%M:%S')
for d in date_time])
for i in range(len(headers))])
date_time = np.array([datetime.strptime(d, '%Y-%m-%d;%H:%M:%S')
for d in date_time])
filt = np.array([headers[i]['filtnam1'] for i in range(len(headers))])
dict_filt = {"POL0":'r', "POL60":'g', "POL120":'b'}
dict_filt = {"POL0": 'r', "POL60": 'g', "POL120": 'b'}
c_filt = np.array([dict_filt[f] for f in filt])
fig,ax = plt.subplots(figsize=(10,6), constrained_layout=True)
fig, ax = plt.subplots(figsize=(10, 6), constrained_layout=True)
for f in np.unique(filt):
mask = [fil==f for fil in filt]
mask = [fil == f for fil in filt]
ax.scatter(date_time[mask], background[mask]*convert_flux[mask],
color=dict_filt[f],label="{0:s}".format(f))
color=dict_filt[f], label="{0:s}".format(f))
ax.errorbar(date_time, background*convert_flux,
yerr=std_bkg*convert_flux, fmt='+k',
markersize=0, ecolor=c_filt)
yerr=std_bkg*convert_flux, fmt='+k',
markersize=0, ecolor=c_filt)
# Date handling
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
@@ -60,85 +63,89 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, binning=Non
ax.set_xlabel("Observation date and time")
ax.set_ylabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
plt.legend()
if not(savename is None):
if not (savename is None):
this_savename = deepcopy(savename)
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
this_savename += '_background_flux.pdf'
else:
this_savename = savename[:-4]+"_background_flux"+savename[-4:]
fig.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
fig.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
if not(histograms is None):
filt_obs = {"POL0":0, "POL60":0, "POL120":0}
fig_h, ax_h = plt.subplots(figsize=(10,6), constrained_layout=True)
if not (histograms is None):
filt_obs = {"POL0": 0, "POL60": 0, "POL120": 0}
fig_h, ax_h = plt.subplots(figsize=(10, 6), constrained_layout=True)
for i, (hist, bins) in enumerate(zip(histograms, binning)):
filt_obs[headers[i]['filtnam1']] += 1
ax_h.plot(bins*convert_flux[i],hist,'+',color="C{0:d}".format(i),alpha=0.8,label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
ax_h.plot([background[i]*convert_flux[i],background[i]*convert_flux[i]],[hist.min(), hist.max()],'x--',color="C{0:d}".format(i),alpha=0.8)
if not(coeff is None):
ax_h.plot(bins*convert_flux[i],gausspol(bins,*coeff[i]),'--',color="C{0:d}".format(i),alpha=0.8)
ax_h.plot(bins*convert_flux[i], hist, '+', color="C{0:d}".format(i), alpha=0.8,
label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
ax_h.plot([background[i]*convert_flux[i], background[i]*convert_flux[i]], [hist.min(), hist.max()], 'x--', color="C{0:d}".format(i), alpha=0.8)
if not (coeff is None):
ax_h.plot(bins*convert_flux[i], gausspol(bins, *coeff[i]), '--', color="C{0:d}".format(i), alpha=0.8)
ax_h.set_xscale('log')
ax_h.set_ylim([0.,np.max([hist.max() for hist in histograms])])
ax_h.set_xlim([np.min(background*convert_flux)*1e-2,np.max(background*convert_flux)*1e2])
ax_h.set_ylim([0., np.max([hist.max() for hist in histograms])])
ax_h.set_xlim([np.min(background*convert_flux)*1e-2, np.max(background*convert_flux)*1e2])
ax_h.set_xlabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
ax_h.set_ylabel(r"Number of pixels in bin")
ax_h.set_title("Histogram for each observation")
plt.legend()
if not(savename is None):
if not (savename is None):
this_savename = deepcopy(savename)
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
this_savename += '_histograms.pdf'
else:
this_savename = savename[:-4]+"_histograms"+savename[-4:]
fig_h.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
fig_h.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
fig2, ax2 = plt.subplots(figsize=(10,10))
fig2, ax2 = plt.subplots(figsize=(10, 10))
data0 = data[0]*convert_flux[0]
bkg_data0 = data0 <= background[0]*convert_flux[0]
instr = headers[0]['instrume']
rootname = headers[0]['rootname']
exptime = headers[0]['exptime']
filt = headers[0]['filtnam1']
#plots
im2 = ax2.imshow(data0, norm=LogNorm(data0[data0>0.].mean()/10.,data0.max()), origin='lower', cmap='gray')
bkg_im = ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
if not(rectangle is None):
# plots
im2 = ax2.imshow(data0, norm=LogNorm(data0[data0 > 0.].mean()/10., data0.max()), origin='lower', cmap='gray')
ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
if not (rectangle is None):
x, y, width, height, angle, color = rectangle[0]
ax2.add_patch(Rectangle((x, y),width,height,edgecolor=color,fill=False,lw=2))
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.01, 1.00), xycoords='axes fraction',verticalalignment='top', horizontalalignment='left')
ax2.add_patch(Rectangle((x, y), width, height, edgecolor=color, fill=False, lw=2))
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.01, 1.00), xycoords='axes fraction', verticalalignment='top', horizontalalignment='left')
ax2.annotate(filt, color='white', fontsize=14, xy=(0.01, 0.01), xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='left')
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(1.00, 0.01), xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='right')
ax2.set(xlabel='pixel offset', ylabel='pixel offset',aspect='equal')
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(1.00, 0.01),
xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='right')
ax2.set(xlabel='pixel offset', ylabel='pixel offset', aspect='equal')
fig2.subplots_adjust(hspace=0, wspace=0, right=1.0)
fig2.colorbar(im2, ax=ax2, location='right', aspect=50, pad=0.025, label=r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
if not(savename is None):
if not (savename is None):
this_savename = deepcopy(savename)
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
this_savename += '_'+filt+'_background_location.pdf'
else:
this_savename = savename[:-4]+'_'+filt+'_background_location'+savename[-4:]
fig2.savefig(path_join(plots_folder,this_savename), bbox_inches='tight')
if not(rectangle is None):
fig2.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
if not (rectangle is None):
plot_obs(data, headers, vmin=data[data > 0.].min()*convert_flux.mean(), vmax=data[data > 0.].max()*convert_flux.mean(), rectangle=rectangle,
savename=savename+"_background_location",plots_folder=plots_folder)
elif not(rectangle is None):
savename=savename+"_background_location", plots_folder=plots_folder)
elif not (rectangle is None):
plot_obs(data, headers, vmin=data[data > 0.].min(), vmax=data[data > 0.].max(), rectangle=rectangle)
plt.show()
def sky_part(img):
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int)%img.size)
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int) % img.size)
rand_pix = img.flatten()[rand_ind]
# Intensity range
sky_med = np.median(rand_pix)
sig = np.min([img[img<sky_med].std(),img[img>sky_med].std()])
sky_range = [sky_med-2.*sig, np.max([sky_med+sig,7e-4])] #Detector background average FOC Data Handbook Sec. 7.6
sig = np.min([img[img < sky_med].std(), img[img > sky_med].std()])
sky_range = [sky_med-2.*sig, np.max([sky_med+sig, 7e-4])] # Detector background average FOC Data Handbook Sec. 7.6
sky = img[np.logical_and(img>=sky_range[0],img<=sky_range[1])]
sky = img[np.logical_and(img >= sky_range[0], img <= sky_range[1])]
return sky, sky_range
def bkg_estimate(img, bins=None, chi2=None, coeff=None):
if bins is None or chi2 is None or coeff is None:
bins, chi2, coeff = [8], [], []
@@ -147,20 +154,21 @@ def bkg_estimate(img, bins=None, chi2=None, coeff=None):
bins.append(int(3./2.*bins[-1]))
except IndexError:
bins, chi2, coeff = [8], [], []
hist, bin_edges = np.histogram(img[img>0], bins=bins[-1])
hist, bin_edges = np.histogram(img[img > 0], bins=bins[-1])
binning = bin_centers(bin_edges)
peak = binning[np.argmax(hist)]
bins_fwhm = binning[hist>hist.max()/2.]
bins_fwhm = binning[hist > hist.max()/2.]
fwhm = bins_fwhm[-1]-bins_fwhm[0]
p0 = [hist.max(), peak, fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
try:
popt, pcov = curve_fit(gausspol, binning, hist, p0=p0)
except RuntimeError:
popt = p0
chi2.append(np.sum((hist - gausspol(binning,*popt))**2)/hist.size)
chi2.append(np.sum((hist - gausspol(binning, *popt))**2)/hist.size)
coeff.append(popt)
return bins, chi2, coeff
def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, savename=None, plots_folder=""):
"""
----------
@@ -208,13 +216,13 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
std_bkg = np.zeros((data.shape[0]))
background = np.zeros((data.shape[0]))
histograms, binning = [], []
for i, image in enumerate(data):
#Compute the Count-rate histogram for the image
sky, sky_range = sky_part(image[image>0.])
# Compute the Count-rate histogram for the image
sky, sky_range = sky_part(image[image > 0.])
bins, chi2, coeff = bkg_estimate(sky)
while bins[-1]<256:
while bins[-1] < 256:
bins, chi2, coeff = bkg_estimate(sky, bins, chi2, coeff)
hist, bin_edges = np.histogram(sky, bins=bins[-1])
histograms.append(hist)
@@ -223,18 +231,18 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
weights = 1/chi2**2
weights /= weights.sum()
bkg = np.sum(weights*coeff[:,1])*subtract_error if subtract_error>0 else np.sum(weights*coeff[:,1])
bkg = np.sum(weights*coeff[:, 1])*subtract_error if subtract_error > 0 else np.sum(weights*coeff[:, 1])
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
#Substract background
if subtract_error>0:
# Substract background
if subtract_error > 0:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
background[i] = bkg
if display:
@@ -293,52 +301,54 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
std_bkg = np.zeros((data.shape[0]))
background = np.zeros((data.shape[0]))
histograms, binning, coeff = [], [], []
for i, image in enumerate(data):
#Compute the Count-rate histogram for the image
n_mask = np.logical_and(mask,image>0.)
# Compute the Count-rate histogram for the image
n_mask = np.logical_and(mask, image > 0.)
if not (sub_type is None):
if type(sub_type) == int:
if isinstance(sub_type, int):
n_bins = sub_type
elif sub_type.lower() in ['sqrt']:
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
elif sub_type.lower() in ['sturges']:
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int)+1 # Sturges
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int)+1 # Sturges
elif sub_type.lower() in ['rice']:
n_bins = 2*np.fix(np.power(image[n_mask].size,1/3)).astype(int) # Rice
n_bins = 2*np.fix(np.power(image[n_mask].size, 1/3)).astype(int) # Rice
elif sub_type.lower() in ['scott']:
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(3.5*image[n_mask].std()/np.power(image[n_mask].size,1/3))).astype(int) # Scott
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(3.5*image[n_mask].std()/np.power(image[n_mask].size, 1/3))).astype(int) # Scott
else:
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25]))/np.power(image[n_mask].size,1/3))).astype(int) # Freedman-Diaconis
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
else:
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25]))/np.power(image[n_mask].size,1/3))).astype(int) # Freedman-Diaconis
hist, bin_edges = np.histogram(np.log(image[n_mask]),bins=n_bins)
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
hist, bin_edges = np.histogram(np.log(image[n_mask]), bins=n_bins)
histograms.append(hist)
binning.append(np.exp(bin_centers(bin_edges)))
#Take the background as the count-rate with the maximum number of pixels
#hist_max = binning[-1][np.argmax(hist)]
#bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
#Fit a gaussian to the log-intensity histogram
bins_fwhm = binning[-1][hist>hist.max()/2.]
# Take the background as the count-rate with the maximum number of pixels
# hist_max = binning[-1][np.argmax(hist)]
# bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
# Fit a gaussian to the log-intensity histogram
bins_fwhm = binning[-1][hist > hist.max()/2.]
fwhm = bins_fwhm[-1]-bins_fwhm[0]
p0 = [hist.max(), binning[-1][np.argmax(hist)], fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
coeff.append(popt)
bkg = popt[1]*subtract_error if subtract_error>0 else popt[1]
bkg = popt[1]*subtract_error if subtract_error > 0 else popt[1]
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
#Substract background
# Substract background
if subtract_error > 0:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask,n_data_array[i] < 0.)] = 0.
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
n_data_array[i][np.logical_and(mask, n_data_array[i] < 0.)] = 0.
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
background[i] = bkg
if display:
@@ -346,7 +356,7 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
return n_data_array, n_error_array, headers, background
def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True, display=False, savename=None, plots_folder=""):
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
"""
Look for sub-image of shape sub_shape that have the smallest integrated
flux (no source assumption) and define the background on the image by the
@@ -396,11 +406,11 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True,
"""
sub_shape = np.array(sub_shape)
# Make sub_shape of odd values
if not(np.all(sub_shape%2)):
sub_shape += 1-sub_shape%2
if not (np.all(sub_shape % 2)):
sub_shape += 1-sub_shape % 2
shape = np.array(data.shape)
diff = (sub_shape-1).astype(int)
temp = np.zeros((shape[0],shape[1]-diff[0],shape[2]-diff[1]))
temp = np.zeros((shape[0], shape[1]-diff[0], shape[2]-diff[1]))
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
error_bkg = np.ones(n_data_array.shape)
@@ -408,37 +418,36 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True,
background = np.zeros((data.shape[0]))
rectangle = []
for i,image in enumerate(data):
for i, image in enumerate(data):
# Find the sub-image of smallest integrated flux (suppose no source)
#sub-image dominated by background
# sub-image dominated by background
fmax = np.finfo(np.double).max
img = deepcopy(image)
img[1-mask] = fmax/(diff[0]*diff[1])
for r in range(temp.shape[1]):
for c in range(temp.shape[2]):
temp[i][r,c] = np.where(mask[r,c], img[r:r+diff[0],c:c+diff[1]].sum(), fmax/(diff[0]*diff[1]))
temp[i][r, c] = np.where(mask[r, c], img[r:r+diff[0], c:c+diff[1]].sum(), fmax/(diff[0]*diff[1]))
minima = np.unravel_index(np.argmin(temp.sum(axis=0)),temp.shape[1:])
minima = np.unravel_index(np.argmin(temp.sum(axis=0)), temp.shape[1:])
for i, image in enumerate(data):
rectangle.append([minima[1], minima[0], sub_shape[1], sub_shape[0], 0., 'r'])
# Compute error : root mean square of the background
sub_image = image[minima[0]:minima[0]+sub_shape[0],minima[1]:minima[1]+sub_shape[1]]
#bkg = np.std(sub_image) # Previously computed using standard deviation over the background
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error>0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
sub_image = image[minima[0]:minima[0]+sub_shape[0], minima[1]:minima[1]+sub_shape[1]]
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
error_bkg[i] *= bkg
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
#Substract background
if subtract_error>0.:
# Substract background
if subtract_error > 0.:
n_data_array[i][mask] = n_data_array[i][mask] - bkg
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
background[i] = bkg
if display:
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
return n_data_array, n_error_array, headers, background

View File

@@ -1,6 +1,5 @@
"""
Library functions for graham algorithm implementation (find the convex hull
of a given list of points).
Library functions for graham algorithm implementation (find the convex hull of a given list of points).
"""
from copy import deepcopy
@@ -8,30 +7,33 @@ import numpy as np
def clean_ROI(image):
H,J = [],[]
"""
Remove instruments borders from an observation.
"""
H, J = [], []
shape = np.array(image.shape)
row, col = np.indices(shape)
for i in range(0,shape[0]):
r = row[i,:][image[i,:]>0.]
c = col[i,:][image[i,:]>0.]
if len(r)>1 and len(c)>1:
H.append((r[0],c[0]))
H.append((r[-1],c[-1]))
for i in range(0, shape[0]):
r = row[i, :][image[i, :] > 0.]
c = col[i, :][image[i, :] > 0.]
if len(r) > 1 and len(c) > 1:
H.append((r[0], c[0]))
H.append((r[-1], c[-1]))
H = np.array(H)
for j in range(0,shape[1]):
r = row[:,j][image[:,j]>0.]
c = col[:,j][image[:,j]>0.]
if len(r)>1 and len(c)>1:
J.append((r[0],c[0]))
J.append((r[-1],c[-1]))
for j in range(0, shape[1]):
r = row[:, j][image[:, j] > 0.]
c = col[:, j][image[:, j] > 0.]
if len(r) > 1 and len(c) > 1:
J.append((r[0], c[0]))
J.append((r[-1], c[-1]))
J = np.array(J)
xmin = np.min([H[:,1].min(),J[:,1].min()])
xmax = np.max([H[:,1].max(),J[:,1].max()])+1
ymin = np.min([H[:,0].min(),J[:,0].min()])
ymax = np.max([H[:,0].max(),J[:,0].max()])+1
return np.array([xmin,xmax,ymin,ymax])
xmin = np.min([H[:, 1].min(), J[:, 1].min()])
xmax = np.max([H[:, 1].max(), J[:, 1].max()])+1
ymin = np.min([H[:, 0].min(), J[:, 0].min()])
ymax = np.max([H[:, 0].max(), J[:, 0].max()])+1
return np.array([xmin, xmax, ymin, ymax])
# Define angle and vectors operations
@@ -116,7 +118,8 @@ def min_lexico(s):
"""
m = s[0]
for x in s:
if lexico(x, m): m = x
if lexico(x, m):
m = x
return m
@@ -145,16 +148,16 @@ def comp(Omega, A, B):
# Implement quicksort
def partition(s, l, r, order):
def partition(s, left, right, order):
"""
Take a random element of a list 's' between indexes 'l', 'r' and place it
Take a random element of a list 's' between indexes 'left', 'right' and place it
at its right spot using relation order 'order'. Return the index at which
it was placed.
----------
Inputs:
s : list
List of elements to be ordered.
l, r : int
left, right : int
Index of the first and last elements to be considered.
order : func: A, B -> bool
Relation order between 2 elements A, B that returns True if A<=B,
@@ -164,30 +167,29 @@ def partition(s, l, r, order):
index : int
Index at which have been placed the element chosen by the function.
"""
i = l - 1
for j in range(l, r):
if order(s[j], s[r]):
i = left - 1
for j in range(left, right):
if order(s[j], s[right]):
i = i + 1
temp = deepcopy(s[i])
s[i] = deepcopy(s[j])
s[j] = deepcopy(temp)
temp = deepcopy(s[i+1])
s[i+1] = deepcopy(s[r])
s[r] = deepcopy(temp)
s[i+1] = deepcopy(s[right])
s[right] = deepcopy(temp)
return i + 1
def sort_aux(s, l, r, order):
def sort_aux(s, left, right, order):
"""
Sort a list 's' between indexes 'l', 'r' using relation order 'order' by
Sort a list 's' between indexes 'left', 'right' using relation order 'order' by
dividing it in 2 sub-lists and sorting these.
"""
if l <= r:
# Call partition function that gives an index on which the list will be
#divided
q = partition(s, l, r, order)
sort_aux(s, l, q - 1, order)
sort_aux(s, q + 1, r, order)
if left <= right:
# Call partition function that gives an index on which the list will be divided
q = partition(s, left, right, order)
sort_aux(s, left, q - 1, order)
sort_aux(s, q + 1, right, order)
def quicksort(s, order):
@@ -204,7 +206,7 @@ def sort_angles_distances(Omega, s):
Sort the list of points 's' for the composition order given reference point
Omega.
"""
order = lambda A, B: comp(Omega, A, B)
def order(A, B): return comp(Omega, A, B)
quicksort(s, order)
@@ -326,24 +328,24 @@ def image_hull(image, step=5, null_val=0., inside=True):
H = []
shape = np.array(image.shape)
row, col = np.indices(shape)
for i in range(0,shape[0],step):
r = row[i,:][image[i,:]>null_val]
c = col[i,:][image[i,:]>null_val]
if len(r)>1 and len(c)>1:
H.append((r[0],c[0]))
H.append((r[-1],c[-1]))
for j in range(0,shape[1],step):
r = row[:,j][image[:,j]>null_val]
c = col[:,j][image[:,j]>null_val]
if len(r)>1 and len(c)>1:
if not((r[0],c[0]) in H):
H.append((r[0],c[0]))
if not((r[-1],c[-1]) in H):
H.append((r[-1],c[-1]))
for i in range(0, shape[0], step):
r = row[i, :][image[i, :] > null_val]
c = col[i, :][image[i, :] > null_val]
if len(r) > 1 and len(c) > 1:
H.append((r[0], c[0]))
H.append((r[-1], c[-1]))
for j in range(0, shape[1], step):
r = row[:, j][image[:, j] > null_val]
c = col[:, j][image[:, j] > null_val]
if len(r) > 1 and len(c) > 1:
if not ((r[0], c[0]) in H):
H.append((r[0], c[0]))
if not ((r[-1], c[-1]) in H):
H.append((r[-1], c[-1]))
S = np.array(convex_hull(H))
x_min, y_min = S[:,0]<S[:,0].mean(), S[:,1]<S[:,1].mean()
x_max, y_max = S[:,0]>S[:,0].mean(), S[:,1]>S[:,1].mean()
x_min, y_min = S[:, 0] < S[:, 0].mean(), S[:, 1] < S[:, 1].mean()
x_max, y_max = S[:, 0] > S[:, 0].mean(), S[:, 1] > S[:, 1].mean()
# Get the 4 extrema
S0 = S[x_min*y_min][np.abs(0-S[x_min*y_min].sum(axis=1)).min() == np.abs(0-S[x_min*y_min].sum(axis=1))][0]
S1 = S[x_min*y_max][np.abs(shape[1]-S[x_min*y_max].sum(axis=1)).min() == np.abs(shape[1]-S[x_min*y_max].sum(axis=1))][0]
@@ -351,14 +353,14 @@ def image_hull(image, step=5, null_val=0., inside=True):
S3 = S[x_max*y_max][np.abs(shape.sum()-S[x_max*y_max].sum(axis=1)).min() == np.abs(shape.sum()-S[x_max*y_max].sum(axis=1))][0]
# Get the vertex of the biggest included rectangle
if inside:
f0 = np.max([S0[0],S1[0]])
f1 = np.min([S2[0],S3[0]])
f2 = np.max([S0[1],S2[1]])
f3 = np.min([S1[1],S3[1]])
f0 = np.max([S0[0], S1[0]])
f1 = np.min([S2[0], S3[0]])
f2 = np.max([S0[1], S2[1]])
f3 = np.min([S1[1], S3[1]])
else:
f0 = np.min([S0[0],S1[0]])
f1 = np.max([S2[0],S3[0]])
f2 = np.min([S0[1],S2[1]])
f3 = np.max([S1[1],S3[1]])
f0 = np.min([S0[0], S1[0]])
f1 = np.max([S2[0], S3[0]])
f2 = np.min([S0[1], S2[1]])
f3 = np.max([S1[1], S3[1]])
return np.array([f0, f1, f2, f3]).astype(int)

View File

@@ -1,10 +1,10 @@
"""
Library functions for phase cross-correlation computation.
"""
##Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+)
#Otherwise fall back to numpy.fft.
#Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer
#C++/pybind11 version called pypocketfft
# Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+)
# Otherwise fall back to numpy.fft.
# Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer
# C++/pybind11 version called pypocketfft
try:
import scipy.fft as fft
except ImportError:
@@ -14,7 +14,7 @@ import numpy as np
def _upsampled_dft(data, upsampled_region_size, upsample_factor=1,
axis_offsets=None):
axis_offsets=None):
"""
Upsampled DFT by matrix multiplication.
This code is intended to provide the same result as if the following
@@ -243,7 +243,7 @@ def phase_cross_correlation(reference_image, moving_image, *,
raise ValueError(
"NaN values found, please remove NaNs from your input data")
return shifts, _compute_error(CCmax, src_amp, target_amp),\
return shifts, _compute_error(CCmax, src_amp, target_amp), \
_compute_phasediff(CCmax)
else:
return shifts

View File

@@ -4,13 +4,13 @@ Library functions for the implementation of various deconvolution algorithms.
prototypes :
- gaussian_psf(FWHM, shape) -> kernel
Return the normalized gaussian point spread function over some kernel shape.
- from_file_psf(filename) -> kernel
Get the point spread function from an external FITS file.
- wiener(image, psf, alpha, clip) -> im_deconv
Implement the simplified Wiener filtering.
- van_cittert(image, psf, alpha, iterations, clip, filter_epsilon) -> im_deconv
Implement Van-Cittert iterative algorithm.
@@ -43,494 +43,521 @@ def abs2(x):
def zeropad(arr, shape):
"""
Zero-pad array ARR to given shape.
The contents of ARR is approximately centered in the result.
"""
rank = arr.ndim
if len(shape) != rank:
raise ValueError("bad number of dimensions")
diff = np.asarray(shape) - np.asarray(arr.shape)
if diff.min() < 0:
raise ValueError("output dimensions must be larger or equal input dimensions")
offset = diff//2
z = np.zeros(shape, dtype=arr.dtype)
if rank == 1:
i0 = offset[0]; n0 = i0 + arr.shape[0]
z[i0:n0] = arr
elif rank == 2:
i0 = offset[0]; n0 = i0 + arr.shape[0]
i1 = offset[1]; n1 = i1 + arr.shape[1]
z[i0:n0,i1:n1] = arr
elif rank == 3:
i0 = offset[0]; n0 = i0 + arr.shape[0]
i1 = offset[1]; n1 = i1 + arr.shape[1]
i2 = offset[2]; n2 = i2 + arr.shape[2]
z[i0:n0,i1:n1,i2:n2] = arr
elif rank == 4:
i0 = offset[0]; n0 = i0 + arr.shape[0]
i1 = offset[1]; n1 = i1 + arr.shape[1]
i2 = offset[2]; n2 = i2 + arr.shape[2]
i3 = offset[3]; n3 = i3 + arr.shape[3]
z[i0:n0,i1:n1,i2:n2,i3:n3] = arr
elif rank == 5:
i0 = offset[0]; n0 = i0 + arr.shape[0]
i1 = offset[1]; n1 = i1 + arr.shape[1]
i2 = offset[2]; n2 = i2 + arr.shape[2]
i3 = offset[3]; n3 = i3 + arr.shape[3]
i4 = offset[4]; n4 = i4 + arr.shape[4]
z[i0:n0,i1:n1,i2:n2,i3:n3,i4:n4] = arr
elif rank == 6:
i0 = offset[0]; n0 = i0 + arr.shape[0]
i1 = offset[1]; n1 = i1 + arr.shape[1]
i2 = offset[2]; n2 = i2 + arr.shape[2]
i3 = offset[3]; n3 = i3 + arr.shape[3]
i4 = offset[4]; n4 = i4 + arr.shape[4]
i5 = offset[5]; n5 = i5 + arr.shape[5]
z[i0:n0,i1:n1,i2:n2,i3:n3,i4:n4,i5:n5] = arr
else:
raise ValueError("too many dimensions")
return z
"""
Zero-pad array ARR to given shape.
The contents of ARR is approximately centered in the result.
"""
rank = arr.ndim
if len(shape) != rank:
raise ValueError("bad number of dimensions")
diff = np.asarray(shape) - np.asarray(arr.shape)
if diff.min() < 0:
raise ValueError("output dimensions must be larger or equal input dimensions")
offset = diff//2
z = np.zeros(shape, dtype=arr.dtype)
if rank == 1:
i0 = offset[0]
n0 = i0 + arr.shape[0]
z[i0:n0] = arr
elif rank == 2:
i0 = offset[0]
n0 = i0 + arr.shape[0]
i1 = offset[1]
n1 = i1 + arr.shape[1]
z[i0:n0, i1:n1] = arr
elif rank == 3:
i0 = offset[0]
n0 = i0 + arr.shape[0]
i1 = offset[1]
n1 = i1 + arr.shape[1]
i2 = offset[2]
n2 = i2 + arr.shape[2]
z[i0:n0, i1:n1, i2:n2] = arr
elif rank == 4:
i0 = offset[0]
n0 = i0 + arr.shape[0]
i1 = offset[1]
n1 = i1 + arr.shape[1]
i2 = offset[2]
n2 = i2 + arr.shape[2]
i3 = offset[3]
n3 = i3 + arr.shape[3]
z[i0:n0, i1:n1, i2:n2, i3:n3] = arr
elif rank == 5:
i0 = offset[0]
n0 = i0 + arr.shape[0]
i1 = offset[1]
n1 = i1 + arr.shape[1]
i2 = offset[2]
n2 = i2 + arr.shape[2]
i3 = offset[3]
n3 = i3 + arr.shape[3]
i4 = offset[4]
n4 = i4 + arr.shape[4]
z[i0:n0, i1:n1, i2:n2, i3:n3, i4:n4] = arr
elif rank == 6:
i0 = offset[0]
n0 = i0 + arr.shape[0]
i1 = offset[1]
n1 = i1 + arr.shape[1]
i2 = offset[2]
n2 = i2 + arr.shape[2]
i3 = offset[3]
n3 = i3 + arr.shape[3]
i4 = offset[4]
n4 = i4 + arr.shape[4]
i5 = offset[5]
n5 = i5 + arr.shape[5]
z[i0:n0, i1:n1, i2:n2, i3:n3, i4:n4, i5:n5] = arr
else:
raise ValueError("too many dimensions")
return z
def gaussian2d(x, y, sigma):
return np.exp(-(x**2+y**2)/(2*sigma**2))/(2*np.pi*sigma**2)
return np.exp(-(x**2+y**2)/(2*sigma**2))/(2*np.pi*sigma**2)
def gaussian_psf(FWHM=1., shape=(5,5)):
"""
Define the gaussian Point-Spread-Function of chosen shape and FWHM.
----------
Inputs:
FWHM : float, optional
The Full Width at Half Maximum of the desired gaussian function for the
PSF in pixel increments.
Defaults to 1.
shape : tuple, optional
The shape of the PSF kernel. Must be of dimension 2.
Defaults to (5,5).
----------
Returns:
kernel : numpy.ndarray
Kernel containing the weights of the desired gaussian PSF.
"""
# Compute standard deviation from FWHM
stdev = FWHM/(2.*np.sqrt(2.*np.log(2.)))
def gaussian_psf(FWHM=1., shape=(5, 5)):
"""
Define the gaussian Point-Spread-Function of chosen shape and FWHM.
----------
Inputs:
FWHM : float, optional
The Full Width at Half Maximum of the desired gaussian function for the
PSF in pixel increments.
Defaults to 1.
shape : tuple, optional
The shape of the PSF kernel. Must be of dimension 2.
Defaults to (5,5).
----------
Returns:
kernel : numpy.ndarray
Kernel containing the weights of the desired gaussian PSF.
"""
# Compute standard deviation from FWHM
stdev = FWHM/(2.*np.sqrt(2.*np.log(2.)))
# Create kernel of desired shape
x, y = np.meshgrid(np.arange(-shape[0]/2,shape[0]/2),np.arange(-shape[1]/2,shape[1]/2))
kernel = gaussian2d(x, y, stdev)
return kernel/kernel.sum()
# Create kernel of desired shape
x, y = np.meshgrid(np.arange(-shape[0]/2, shape[0]/2), np.arange(-shape[1]/2, shape[1]/2))
kernel = gaussian2d(x, y, stdev)
return kernel/kernel.sum()
def from_file_psf(filename):
"""
Get the Point-Spread-Function from an external FITS file.
Such PSF can be generated using the TinyTim standalone program by STSCI.
See:
[1] https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/tiny-tim-hst-psf-modeling
[2] https://doi.org/10.1117/12.892762
----------
Inputs:
filename : str
----------
kernel : numpy.ndarray
Kernel containing the weights of the desired gaussian PSF.
"""
with fits.open(filename) as f:
psf = f[0].data
if (type(psf) != np.ndarray) or len(psf) != 2:
raise ValueError("Invalid PSF image in PrimaryHDU at {0:s}".format(filename))
#Return the normalized Point Spread Function
kernel = psf/psf.max()
return kernel
"""
Get the Point-Spread-Function from an external FITS file.
Such PSF can be generated using the TinyTim standalone program by STSCI.
See:
[1] https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/tiny-tim-hst-psf-modeling
[2] https://doi.org/10.1117/12.892762
----------
Inputs:
filename : str
----------
kernel : numpy.ndarray
Kernel containing the weights of the desired gaussian PSF.
"""
with fits.open(filename) as f:
psf = f[0].data
if isinstance(psf, np.ndarray) or len(psf) != 2:
raise ValueError("Invalid PSF image in PrimaryHDU at {0:s}".format(filename))
# Return the normalized Point Spread Function
kernel = psf/psf.max()
return kernel
def wiener(image, psf, alpha=0.1, clip=True):
"""
Implement the simplified Wiener filtering.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A parameter value for numerous deconvolution algorithms.
Defaults to 0.1
clip : boolean, optional
If true, pixel value of the result above 1 or under -1 are thresholded
for skimage pipeline compatibility.
Defaults to True.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = zeropad(psf.astype(float_type, copy=False), image.shape)
psf /= psf.sum()
im_deconv = image.copy()
"""
Implement the simplified Wiener filtering.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A parameter value for numerous deconvolution algorithms.
Defaults to 0.1
clip : boolean, optional
If true, pixel value of the result above 1 or under -1 are thresholded
for skimage pipeline compatibility.
Defaults to True.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = zeropad(psf.astype(float_type, copy=False), image.shape)
psf /= psf.sum()
im_deconv = image.copy()
ft_y = np.fft.fftn(im_deconv)
ft_h = np.fft.fftn(np.fft.ifftshift(psf))
ft_y = np.fft.fftn(im_deconv)
ft_h = np.fft.fftn(np.fft.ifftshift(psf))
ft_x = ft_h.conj()*ft_y / (abs2(ft_h) + alpha)
im_deconv = np.fft.ifftn(ft_x).real
ft_x = ft_h.conj()*ft_y / (abs2(ft_h) + alpha)
im_deconv = np.fft.ifftn(ft_x).real
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
return im_deconv/im_deconv.max()
return im_deconv/im_deconv.max()
def van_cittert(image, psf, alpha=0.1, iterations=20, clip=True, filter_epsilon=None):
"""
Van-Citter deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
alpha : float, optional
A weight parameter for the deconvolution step.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
"""
Van-Citter deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
alpha : float, optional
A weight parameter for the deconvolution step.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
else:
relative_blur = image - conv
im_deconv += alpha*relative_blur
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
else:
relative_blur = image - conv
im_deconv += alpha*relative_blur
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
return im_deconv
return im_deconv
def richardson_lucy(image, psf, iterations=20, clip=True, filter_epsilon=None):
"""
Richardson-Lucy deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
----------
References
[1] https://doi.org/10.1364/JOSA.62.000055
[2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
psf_mirror = np.flip(psf)
"""
Richardson-Lucy deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
----------
References
[1] https://doi.org/10.1364/JOSA.62.000055
[2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
psf_mirror = np.flip(psf)
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image / conv)
else:
relative_blur = image / conv
im_deconv *= convolve(relative_blur, psf_mirror, mode='same')
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image / conv)
else:
relative_blur = image / conv
im_deconv *= convolve(relative_blur, psf_mirror, mode='same')
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
return im_deconv
return im_deconv
def one_step_gradient(image, psf, iterations=20, clip=True, filter_epsilon=None):
"""
One-step gradient deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
psf_mirror = np.flip(psf)
"""
One-step gradient deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
im_deconv = image.copy()
psf_mirror = np.flip(psf)
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
else:
relative_blur = image - conv
im_deconv += convolve(relative_blur, psf_mirror, mode='same')
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image - conv)
else:
relative_blur = image - conv
im_deconv += convolve(relative_blur, psf_mirror, mode='same')
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
return im_deconv
return im_deconv
def conjgrad(image, psf, alpha=0.1, error=None, iterations=20):
"""
Implement the Conjugate Gradient algorithm.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A weight parameter for the regularisation matrix.
Defaults to 0.1
error : numpy.ndarray, optional
Known background noise on the inputed image. Will be used for weighted
deconvolution. If None, all weights will be set to 1.
Defaults to None.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
Defaults to 20.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
# A.x = b avec A = HtWH+aDtD et b = HtWy
#Define ft_h : the zeropadded and shifted Fourier transform of the PSF
ft_h = np.fft.fftn(np.fft.ifftshift(zeropad(psf,image.shape)))
#Define weights as normalized signal to noise ratio
if error is None:
wgt = np.ones(image.shape)
else:
wgt = image/error
wgt /= wgt.max()
"""
Implement the Conjugate Gradient algorithm.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A weight parameter for the regularisation matrix.
Defaults to 0.1
error : numpy.ndarray, optional
Known background noise on the inputed image. Will be used for weighted
deconvolution. If None, all weights will be set to 1.
Defaults to None.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
Defaults to 20.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
psf /= psf.sum()
def W(x):
"""Define W operator : apply weights"""
return wgt*x
# A.x = b avec A = HtWH+aDtD et b = HtWy
# Define ft_h : the zeropadded and shifted Fourier transform of the PSF
ft_h = np.fft.fftn(np.fft.ifftshift(zeropad(psf, image.shape)))
# Define weights as normalized signal to noise ratio
if error is None:
wgt = np.ones(image.shape)
else:
wgt = image/error
wgt /= wgt.max()
def H(x):
"""Define H operator : convolution with PSF"""
return np.fft.ifftn(ft_h*np.fft.fftn(x)).real
def W(x):
"""Define W operator : apply weights"""
return wgt*x
def Ht(x):
"""Define Ht operator : transpose of H"""
return np.fft.ifftn(ft_h.conj()*np.fft.fftn(x)).real
def H(x):
"""Define H operator : convolution with PSF"""
return np.fft.ifftn(ft_h*np.fft.fftn(x)).real
def DtD(x):
"""Returns the result of D'.D.x where D is a (multi-dimensional)
finite difference operator and D' is its transpose."""
dims = x.shape
r = np.zeros(dims, dtype=x.dtype) # to store the result
rank = x.ndim # number of dimensions
if rank == 0: return r
if dims[0] >= 2:
dx = x[1:-1,...] - x[0:-2,...]
r[1:-1,...] += dx
r[0:-2,...] -= dx
if rank == 1: return r
if dims[1] >= 2:
dx = x[:,1:-1,...] - x[:,0:-2,...]
r[:,1:-1,...] += dx
r[:,0:-2,...] -= dx
if rank == 2: return r
if dims[2] >= 2:
dx = x[:,:,1:-1,...] - x[:,:,0:-2,...]
r[:,:,1:-1,...] += dx
r[:,:,0:-2,...] -= dx
if rank == 3: return r
if dims[3] >= 2:
dx = x[:,:,:,1:-1,...] - x[:,:,:,0:-2,...]
r[:,:,:,1:-1,...] += dx
r[:,:,:,0:-2,...] -= dx
if rank == 4: return r
if dims[4] >= 2:
dx = x[:,:,:,:,1:-1,...] - x[:,:,:,:,0:-2,...]
r[:,:,:,:,1:-1,...] += dx
r[:,:,:,:,0:-2,...] -= dx
if rank == 5: return r
raise ValueError("too many dimensions")
def Ht(x):
"""Define Ht operator : transpose of H"""
return np.fft.ifftn(ft_h.conj()*np.fft.fftn(x)).real
def A(x):
"""Define symetric positive semi definite operator A"""
return Ht(W(H(x)))+alpha*DtD(x)
def DtD(x):
"""Returns the result of D'.D.x where D is a (multi-dimensional)
finite difference operator and D' is its transpose."""
dims = x.shape
r = np.zeros(dims, dtype=x.dtype) # to store the result
rank = x.ndim # number of dimensions
if rank == 0:
return r
if dims[0] >= 2:
dx = x[1:-1, ...] - x[0:-2, ...]
r[1:-1, ...] += dx
r[0:-2, ...] -= dx
if rank == 1:
return r
if dims[1] >= 2:
dx = x[:, 1:-1, ...] - x[:, 0:-2, ...]
r[:, 1:-1, ...] += dx
r[:, 0:-2, ...] -= dx
if rank == 2:
return r
if dims[2] >= 2:
dx = x[:, :, 1:-1, ...] - x[:, :, 0:-2, ...]
r[:, :, 1:-1, ...] += dx
r[:, :, 0:-2, ...] -= dx
if rank == 3:
return r
if dims[3] >= 2:
dx = x[:, :, :, 1:-1, ...] - x[:, :, :, 0:-2, ...]
r[:, :, :, 1:-1, ...] += dx
r[:, :, :, 0:-2, ...] -= dx
if rank == 4:
return r
if dims[4] >= 2:
dx = x[:, :, :, :, 1:-1, ...] - x[:, :, :, :, 0:-2, ...]
r[:, :, :, :, 1:-1, ...] += dx
r[:, :, :, :, 0:-2, ...] -= dx
if rank == 5:
return r
raise ValueError("too many dimensions")
#Define obtained vector A.x = b
b = Ht(W(image))
def inner(x,y):
"""Compute inner product of X and Y regardless their shapes
(their number of elements must however match)."""
return np.inner(x.ravel(),y.ravel())
def A(x):
"""Define symetric positive semi definite operator A"""
return Ht(W(H(x)))+alpha*DtD(x)
# Compute initial residuals.
r = np.copy(b)
x = np.zeros(b.shape, dtype=b.dtype)
rho = inner(r,r)
epsilon = np.max([0., 1e-5*np.sqrt(rho)])
# Define obtained vector A.x = b
b = Ht(W(image))
# Conjugate gradient iterations.
beta = 0.0
k = 0
while (k <= iterations) and (np.sqrt(rho) > epsilon):
if np.sqrt(rho) <= epsilon:
print("Converged before maximum iteration.")
break
k += 1
if k > iterations:
print("Didn't converge before maximum iteration.")
break
def inner(x, y):
"""Compute inner product of X and Y regardless their shapes
(their number of elements must however match)."""
return np.inner(x.ravel(), y.ravel())
# Next search direction.
if beta == 0.0:
p = r
else:
p = r + beta*p
# Compute initial residuals.
r = np.copy(b)
x = np.zeros(b.shape, dtype=b.dtype)
rho = inner(r, r)
epsilon = np.max([0., 1e-5*np.sqrt(rho)])
# Make optimal step along search direction.
q = A(p)
gamma = inner(p, q)
if gamma <= 0.0:
raise ValueError("Operator A is not positive definite")
alpha = rho/gamma
x += alpha*p
r -= alpha*q
rho_prev, rho = rho, inner(r,r)
beta = rho/rho_prev
# Conjugate gradient iterations.
beta = 0.0
k = 0
while (k <= iterations) and (np.sqrt(rho) > epsilon):
if np.sqrt(rho) <= epsilon:
print("Converged before maximum iteration.")
break
k += 1
if k > iterations:
print("Didn't converge before maximum iteration.")
break
#Return normalized solution
im_deconv = x/x.max()
return im_deconv
# Next search direction.
if beta == 0.0:
p = r
else:
p = r + beta*p
# Make optimal step along search direction.
q = A(p)
gamma = inner(p, q)
if gamma <= 0.0:
raise ValueError("Operator A is not positive definite")
alpha = rho/gamma
x += alpha*p
r -= alpha*q
rho_prev, rho = rho, inner(r, r)
beta = rho/rho_prev
# Return normalized solution
im_deconv = x/x.max()
return im_deconv
def deconvolve_im(image, psf, alpha=0.1, error=None, iterations=20, clip=True,
filter_epsilon=None, algo='richardson'):
"""
Prepare an image for deconvolution using a chosen algorithm and return
results.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A parameter value for numerous deconvolution algorithms.
Defaults to 0.1
error : numpy.ndarray, optional
Known background noise on the inputed image. Will be used for weighted
deconvolution. If None, all weights will be set to 1.
Defaults to None.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
Defaults to 20.
clip : boolean, optional
If true, pixel value of the result above 1 or under -1 are thresholded
for skimage pipeline compatibility.
Defaults to True.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
Defaults to None.
algo : str, optional
Name of the deconvolution algorithm that will be used. Implemented
algorithms are the following : 'Wiener', 'Van-Cittert', 'One Step Gradient',
'Conjugate Gradient' and 'Richardson-Lucy'.
Defaults to 'Richardson-Lucy'.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
# Normalize image to highest pixel value
pxmax = image[np.isfinite(image)].max()
if pxmax == 0.:
raise ValueError("Invalid image")
norm_image = image/pxmax
"""
Prepare an image for deconvolution using a chosen algorithm and return
results.
----------
Inputs:
image : numpy.ndarray
Input degraded image (can be N dimensional) of floats.
psf : numpy.ndarray
The kernel of the point spread function. Must have shape less or equal to
the image shape. If less, it will be zeropadded.
alpha : float, optional
A parameter value for numerous deconvolution algorithms.
Defaults to 0.1
error : numpy.ndarray, optional
Known background noise on the inputed image. Will be used for weighted
deconvolution. If None, all weights will be set to 1.
Defaults to None.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
Defaults to 20.
clip : boolean, optional
If true, pixel value of the result above 1 or under -1 are thresholded
for skimage pipeline compatibility.
Defaults to True.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
Defaults to None.
algo : str, optional
Name of the deconvolution algorithm that will be used. Implemented
algorithms are the following : 'Wiener', 'Van-Cittert', 'One Step Gradient',
'Conjugate Gradient' and 'Richardson-Lucy'.
Defaults to 'Richardson-Lucy'.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
# Normalize image to highest pixel value
pxmax = image[np.isfinite(image)].max()
if pxmax == 0.:
raise ValueError("Invalid image")
norm_image = image/pxmax
# Deconvolve normalized image
if algo.lower() in ['wiener','wiener simple']:
norm_deconv = wiener(image=norm_image, psf=psf, alpha=alpha, clip=clip)
elif algo.lower() in ['van-cittert','vancittert','cittert']:
norm_deconv = van_cittert(image=norm_image, psf=psf, alpha=alpha,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
elif algo.lower() in ['1grad','one_step_grad','one step grad']:
norm_deconv = one_step_gradient(image=norm_image, psf=psf,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
elif algo.lower() in ['conjgrad','conj_grad','conjugate gradient']:
norm_deconv = conj_grad(image=norm_image, psf=psf, alpha=alpha,
error=error, iterations=iterations)
else: # Defaults to Richardson-Lucy
norm_deconv = richardson_lucy(image=norm_image, psf=psf,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
# Deconvolve normalized image
if algo.lower() in ['wiener', 'wiener simple']:
norm_deconv = wiener(image=norm_image, psf=psf, alpha=alpha, clip=clip)
elif algo.lower() in ['van-cittert', 'vancittert', 'cittert']:
norm_deconv = van_cittert(image=norm_image, psf=psf, alpha=alpha,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
elif algo.lower() in ['1grad', 'one_step_grad', 'one step grad']:
norm_deconv = one_step_gradient(image=norm_image, psf=psf,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
elif algo.lower() in ['conjgrad', 'conj_grad', 'conjugate gradient']:
norm_deconv = conj_grad(image=norm_image, psf=psf, alpha=alpha,
error=error, iterations=iterations)
else: # Defaults to Richardson-Lucy
norm_deconv = richardson_lucy(image=norm_image, psf=psf,
iterations=iterations, clip=clip, filter_epsilon=filter_epsilon)
# Output deconvolved image with original pxmax value
im_deconv = pxmax*norm_deconv
# Output deconvolved image with original pxmax value
im_deconv = pxmax*norm_deconv
return im_deconv
return im_deconv

View File

@@ -15,9 +15,8 @@ import numpy as np
from os.path import join as path_join
from astropy.io import fits
from astropy.wcs import WCS
from lib.convex_hull import image_hull, clean_ROI
from lib.convex_hull import clean_ROI
from lib.plots import princ_angle
import matplotlib.pyplot as plt
def get_obs_data(infiles, data_folder="", compute_flux=False):
@@ -42,29 +41,29 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
"""
data_array, headers = [], []
for i in range(len(infiles)):
with fits.open(path_join(data_folder,infiles[i])) as f:
with fits.open(path_join(data_folder, infiles[i])) as f:
headers.append(f[0].header)
data_array.append(f[0].data)
data_array = np.array(data_array,dtype=np.double)
data_array = np.array(data_array, dtype=np.double)
# Prevent negative count value in imported data
for i in range(len(data_array)):
data_array[i][data_array[i] < 0.] = 0.
# force WCS to convention PCi_ja unitary, cdelt in deg
for header in headers:
new_wcs = WCS(header).deepcopy()
if new_wcs.wcs.has_cd() or (new_wcs.wcs.cdelt[:2] == np.array([1., 1.])).all():
# Update WCS with relevant information
if new_wcs.wcs.has_cd():
old_cd = new_wcs.wcs.cd[:2,:2]
old_cd = new_wcs.wcs.cd[:2, :2]
del new_wcs.wcs.cd
keys = list(new_wcs.to_header().keys())+['CD1_1','CD1_2','CD2_1','CD2_2']
keys = list(new_wcs.to_header().keys())+['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']
for key in keys:
header.remove(key, ignore_missing=True)
new_cdelt = np.linalg.eig(old_cd)[0]
elif (new_wcs.wcs.cdelt == np.array([1., 1.])).all() and \
(new_wcs.array_shape in [(512, 512),(1024,512),(512,1024),(1024,1024)]):
(new_wcs.array_shape in [(512, 512), (1024, 512), (512, 1024), (1024, 1024)]):
old_cd = new_wcs.wcs.pc
new_wcs.wcs.pc = np.dot(old_cd, np.diag(1./new_cdelt))
new_wcs.wcs.cdelt = new_cdelt
@@ -73,14 +72,14 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
header['orientat'] = princ_angle(float(header['orientat']))
# force WCS for POL60 to have same pixel size as POL0 and POL120
is_pol60 = np.array([head['filtnam1'].lower()=='pol60' for head in headers],dtype=bool)
cdelt = np.round(np.array([WCS(head).wcs.cdelt for head in headers]),14)
if np.unique(cdelt[np.logical_not(is_pol60)],axis=0).size!=2:
print(np.unique(cdelt[np.logical_not(is_pol60)],axis=0))
is_pol60 = np.array([head['filtnam1'].lower() == 'pol60' for head in headers], dtype=bool)
cdelt = np.round(np.array([WCS(head).wcs.cdelt for head in headers]), 14)
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
raise ValueError("Not all images have same pixel size")
else:
for i in np.arange(len(headers))[is_pol60]:
headers[i]['cdelt1'],headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)],axis=0)[0]
headers[i]['cdelt1'], headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
if compute_flux:
for i in range(len(infiles)):
@@ -91,8 +90,8 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
return_hdul=False):
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
return_hdul=False):
"""
Save computed polarimetry parameters to a single fits file,
updating header accordingly.
@@ -127,12 +126,12 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
informations (WCS, orientation, data_type).
Only returned if return_hdul is True.
"""
#Create new WCS object given the modified images
# Create new WCS object given the modified images
ref_header = headers[0]
exp_tot = np.array([header['exptime'] for header in headers]).sum()
new_wcs = WCS(ref_header).deepcopy()
if data_mask.shape != (1,1):
if data_mask.shape != (1, 1):
vertex = clean_ROI(data_mask)
shape = vertex[1::2]-vertex[0::2]
new_wcs.array_shape = shape
@@ -153,56 +152,56 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
header['PA_int'] = (ref_header['PA_int'], 'Integrated polarisation angle')
header['PA_int_err'] = (ref_header['PA_int_err'], 'Integrated polarisation angle error')
#Crop Data to mask
if data_mask.shape != (1,1):
I_stokes = I_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
Q_stokes = Q_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
U_stokes = U_stokes[vertex[2]:vertex[3],vertex[0]:vertex[1]]
P = P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
debiased_P = debiased_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
s_P = s_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
s_P_P = s_P_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
PA = PA[vertex[2]:vertex[3],vertex[0]:vertex[1]]
s_PA = s_PA[vertex[2]:vertex[3],vertex[0]:vertex[1]]
s_PA_P = s_PA_P[vertex[2]:vertex[3],vertex[0]:vertex[1]]
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2],*shape[::-1]))
# Crop Data to mask
if data_mask.shape != (1, 1):
I_stokes = I_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
Q_stokes = Q_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
U_stokes = U_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
P = P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
debiased_P = debiased_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
s_P = s_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
s_P_P = s_P_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
PA = PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
s_PA = s_PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
s_PA_P = s_PA_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
for i in range(3):
for j in range(3):
Stokes_cov[i,j][(1-data_mask).astype(bool)] = 0.
new_Stokes_cov[i,j] = Stokes_cov[i,j][vertex[2]:vertex[3],vertex[0]:vertex[1]]
Stokes_cov[i, j][(1-data_mask).astype(bool)] = 0.
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2]:vertex[3], vertex[0]:vertex[1]]
Stokes_cov = new_Stokes_cov
data_mask = data_mask[vertex[2]:vertex[3],vertex[0]:vertex[1]]
data_mask = data_mask[vertex[2]:vertex[3], vertex[0]:vertex[1]]
data_mask = data_mask.astype(float, copy=False)
#Create HDUList object
# Create HDUList object
hdul = fits.HDUList([])
#Add I_stokes as PrimaryHDU
# Add I_stokes as PrimaryHDU
header['datatype'] = ('I_stokes', 'type of data stored in the HDU')
I_stokes[(1-data_mask).astype(bool)] = 0.
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
primary_hdu.name = 'I_stokes'
hdul.append(primary_hdu)
#Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
for data, name in [[Q_stokes,'Q_stokes'],[U_stokes,'U_stokes'],
[Stokes_cov,'IQU_cov_matrix'],[P, 'Pol_deg'],
[debiased_P, 'Pol_deg_debiased'],[s_P, 'Pol_deg_err'],
[s_P_P, 'Pol_deg_err_Poisson_noise'],[PA, 'Pol_ang'],
[s_PA, 'Pol_ang_err'],[s_PA_P, 'Pol_ang_err_Poisson_noise'],
[data_mask, 'Data_mask']]:
# Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
for data, name in [[Q_stokes, 'Q_stokes'], [U_stokes, 'U_stokes'],
[Stokes_cov, 'IQU_cov_matrix'], [P, 'Pol_deg'],
[debiased_P, 'Pol_deg_debiased'], [s_P, 'Pol_deg_err'],
[s_P_P, 'Pol_deg_err_Poisson_noise'], [PA, 'Pol_ang'],
[s_PA, 'Pol_ang_err'], [s_PA_P, 'Pol_ang_err_Poisson_noise'],
[data_mask, 'Data_mask']]:
hdu_header = header.copy()
hdu_header['datatype'] = name
if not name == 'IQU_cov_matrix':
data[(1-data_mask).astype(bool)] = 0.
hdu = fits.ImageHDU(data=data,header=hdu_header)
hdu = fits.ImageHDU(data=data, header=hdu_header)
hdu.name = name
hdul.append(hdu)
#Save fits file to designated filepath
hdul.writeto(path_join(data_folder,filename+".fits"), overwrite=True)
# Save fits file to designated filepath
hdul.writeto(path_join(data_folder, filename+".fits"), overwrite=True)
if return_hdul:
return hdul

File diff suppressed because it is too large Load Diff

View File

@@ -17,17 +17,20 @@ def divide_proposal(products):
Divide observation in proposals by time or filter
"""
for pid in np.unique(products['Proposal ID']):
obs = products[products['Proposal ID']==pid].copy()
close_date = np.unique(np.array([TimeDelta(np.abs(Time(obs['Start']).unix-date.unix),format='sec') < 7.*u.d for date in obs['Start']], dtype=bool), axis=0)
if len(close_date)>1:
obs = products[products['Proposal ID'] == pid].copy()
close_date = np.unique(np.array([TimeDelta(np.abs(Time(obs['Start']).unix-date.unix), format='sec')
< 7.*u.d for date in obs['Start']], dtype=bool), axis=0)
if len(close_date) > 1:
for date in close_date:
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][date]],axis=0)] = "_".join([obs['Proposal ID'][date][0],str(obs['Start'][date][0])[:10]])
products['Proposal ID'][np.any([products['Dataset'] == dataset for dataset in obs['Dataset'][date]], axis=0)
] = "_".join([obs['Proposal ID'][date][0], str(obs['Start'][date][0])[:10]])
for pid in np.unique(products['Proposal ID']):
obs = products[products['Proposal ID']==pid].copy()
same_filt = np.unique(np.array(np.sum([obs['Filters'][:,1:]==filt[1:] for filt in obs['Filters']],axis=2)<3,dtype=bool),axis=0)
if len(same_filt)>1:
obs = products[products['Proposal ID'] == pid].copy()
same_filt = np.unique(np.array(np.sum([obs['Filters'][:, 1:] == filt[1:] for filt in obs['Filters']], axis=2) < 3, dtype=bool), axis=0)
if len(same_filt) > 1:
for filt in same_filt:
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][filt]],axis=0)] = "_".join([obs['Proposal ID'][filt][0],"_".join([fi for fi in obs['Filters'][filt][0][1:] if fi[:-1]!="CLEAR"])])
products['Proposal ID'][np.any([products['Dataset'] == dataset for dataset in obs['Dataset'][filt]], axis=0)] = "_".join(
[obs['Proposal ID'][filt][0], "_".join([fi for fi in obs['Filters'][filt][0][1:] if fi[:-1] != "CLEAR"])])
return products
@@ -78,22 +81,22 @@ def get_product_list(target=None, proposal_id=None):
for c, n_c in zip(select_cols, cols):
results.rename_column(c, n_c)
results['Proposal ID'] = Column(results['Proposal ID'],dtype='U35')
results['Filters'] = Column(np.array([filt.split(";") for filt in results['Filters']],dtype=str))
results['Proposal ID'] = Column(results['Proposal ID'], dtype='U35')
results['Filters'] = Column(np.array([filt.split(";") for filt in results['Filters']], dtype=str))
results['Start'] = Column(Time(results['Start']))
results['Stop'] = Column(Time(results['Stop']))
results = divide_proposal(results)
obs = results.copy()
### Remove single observations for which a FIND filter is used
to_remove=[]
# Remove single observations for which a FIND filter is used
to_remove = []
for i in range(len(obs)):
if "F1ND" in obs[i]['Filters']:
to_remove.append(i)
obs.remove_rows(to_remove)
### Remove observations for which a polarization filter is missing
polfilt = {"POL0":0,"POL60":1,"POL120":2}
# Remove observations for which a polarization filter is missing
polfilt = {"POL0": 0, "POL60": 1, "POL120": 2}
for pid in np.unique(obs['Proposal ID']):
used_pol = np.zeros(3)
for dataset in obs[obs['Proposal ID'] == pid]:
@@ -102,26 +105,26 @@ def get_product_list(target=None, proposal_id=None):
obs.remove_rows(np.arange(len(obs))[obs['Proposal ID'] == pid])
tab = unique(obs, ['Target name', 'Proposal ID'])
obs["Obs"] = [np.argmax(np.logical_and(tab['Proposal ID']==data['Proposal ID'],tab['Target name']==data['Target name']))+1 for data in obs]
obs["Obs"] = [np.argmax(np.logical_and(tab['Proposal ID'] == data['Proposal ID'], tab['Target name'] == data['Target name']))+1 for data in obs]
try:
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument",
"Size", "Target name", "Proposal ID", "PI last name"]], 'Obs')
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument", "Size", "Target name", "Proposal ID", "PI last name"]], 'Obs')
except IndexError:
raise ValueError(
"There is no observation with POL0, POL60 and POL120 for {0:s} in HST/FOC Legacy Archive".format(target))
b = np.zeros(len(results), dtype=bool)
if not proposal_id is None and str(proposal_id) in obs['Proposal ID']:
if proposal_id is not None and str(proposal_id) in obs['Proposal ID']:
b[results['Proposal ID'] == str(proposal_id)] = True
else:
n_obs.pprint(len(n_obs)+2)
a = [np.array(i.split(":"), dtype=str) for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(',')]
if a[0][0]=='':
a = [np.array(i.split(":"), dtype=str)
for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(',')]
if a[0][0] == '':
a = [[1]]
if a[0][0] in ['a','all','*']:
b = np.ones(len(results),dtype=bool)
if a[0][0] in ['a', 'all', '*']:
b = np.ones(len(results), dtype=bool)
else:
a = [np.array(i,dtype=int) for i in a]
a = [np.array(i, dtype=int) for i in a]
for i in a:
if len(i) > 1:
for j in range(i[0], i[1]+1):
@@ -135,19 +138,19 @@ def get_product_list(target=None, proposal_id=None):
dataproduct_type=['image'],
calib_level=[2],
description="DADS C0F file - Calibrated exposure WFPC/WFPC2/FOC/FOS/GHRS/HSP")
products['proposal_id'] = Column(products['proposal_id'],dtype='U35')
products['proposal_id'] = Column(products['proposal_id'], dtype='U35')
products['target_name'] = Column(observations['target_name'])
for prod in products:
prod['proposal_id'] = results['Proposal ID'][results['Dataset']==prod['productFilename'][:len(results['Dataset'][0])].upper()][0]
prod['proposal_id'] = results['Proposal ID'][results['Dataset'] == prod['productFilename'][:len(results['Dataset'][0])].upper()][0]
for prod in products:
prod['target_name'] = observations['target_name'][observations['obsid']==prod['obsID']][0]
prod['target_name'] = observations['target_name'][observations['obsid'] == prod['obsID']][0]
tab = unique(products, ['target_name', 'proposal_id'])
if len(tab)>1 and np.all(tab['target_name']==tab['target_name'][0]):
if len(tab) > 1 and np.all(tab['target_name'] == tab['target_name'][0]):
target = tab['target_name'][0]
products["Obs"] = [np.argmax(np.logical_and(tab['proposal_id']==data['proposal_id'],tab['target_name']==data['target_name']))+1 for data in products]
products["Obs"] = [np.argmax(np.logical_and(tab['proposal_id'] == data['proposal_id'], tab['target_name'] == data['target_name']))+1 for data in products]
return target, products
@@ -155,17 +158,17 @@ def retrieve_products(target=None, proposal_id=None, output_dir='./data'):
"""
Given a target name and a proposal_id, create the local directories and retrieve the fits files from the MAST Archive
"""
target, products = get_product_list(target=target,proposal_id=proposal_id)
target, products = get_product_list(target=target, proposal_id=proposal_id)
prodpaths = []
data_dir = path_join(output_dir, target)
# data_dir = path_join(output_dir, target)
out = ""
for obs in unique(products,'Obs'):
for obs in unique(products, 'Obs'):
filepaths = []
#obs_dir = path_join(data_dir, obs['prodposal_id'])
#if obs['target_name']!=target:
# obs_dir = path_join(data_dir, obs['prodposal_id'])
# if obs['target_name']!=target:
obs_dir = path_join(path_join(output_dir, target), obs['proposal_id'])
if not path_exists(obs_dir):
system("mkdir -p {0:s} {1:s}".format(obs_dir,obs_dir.replace("data","plots")))
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
for file in products['productFilename'][products['Obs'] == obs['Obs']]:
fpath = path_join(obs_dir, file)
if not path_exists(fpath):
@@ -173,8 +176,8 @@ def retrieve_products(target=None, proposal_id=None, output_dir='./data'):
products['dataURI'][products['productFilename'] == file][0], local_path=fpath)[0])
else:
out += "{0:s} : Exists\n".format(file)
filepaths.append([obs_dir,file])
prodpaths.append(np.array(filepaths,dtype=str))
filepaths.append([obs_dir, file])
prodpaths.append(np.array(filepaths, dtype=str))
return target, prodpaths
@@ -183,12 +186,12 @@ if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Query MAST for target products')
parser.add_argument('-t','--target', metavar='targetname', required=False,
parser.add_argument('-t', '--target', metavar='targetname', required=False,
help='the name of the target', type=str, default=None)
parser.add_argument('-p','--proposal_id', metavar='proposal_id', required=False,
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False,
help='the proposal id of the data products', type=int, default=None)
parser.add_argument('-o','--output_dir', metavar='directory_path', required=False,
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
help='output directory path for the data products', type=str, default="./data")
args = parser.parse_args()
prodpaths = retrieve_products(target=args.target, proposal_id=args.proposal_id)
print(prodpaths)
print(prodpaths)

File diff suppressed because it is too large Load Diff

View File

@@ -7,65 +7,66 @@ from lib.plots import overplot_radio, overplot_pol, align_pol
from matplotlib.colors import LogNorm
Stokes_UV = fits.open("./data/IC5063/5918/IC5063_FOC_b0.10arcsec_c0.20arcsec.fits")
#Stokes_18GHz = fits.open("./data/IC5063/radio/IC5063_18GHz.fits")
#Stokes_24GHz = fits.open("./data/IC5063/radio/IC5063_24GHz.fits")
#Stokes_103GHz = fits.open("./data/IC5063/radio/IC5063_103GHz.fits")
#Stokes_229GHz = fits.open("./data/IC5063/radio/IC5063_229GHz.fits")
#Stokes_357GHz = fits.open("./data/IC5063/radio/IC5063_357GHz.fits")
#Stokes_S2 = fits.open("./data/IC5063/POLARIZATION_COMPARISON/S2_rot_crop.fits")
# Stokes_18GHz = fits.open("./data/IC5063/radio/IC5063_18GHz.fits")
# Stokes_24GHz = fits.open("./data/IC5063/radio/IC5063_24GHz.fits")
# Stokes_103GHz = fits.open("./data/IC5063/radio/IC5063_103GHz.fits")
# Stokes_229GHz = fits.open("./data/IC5063/radio/IC5063_229GHz.fits")
# Stokes_357GHz = fits.open("./data/IC5063/radio/IC5063_357GHz.fits")
# Stokes_S2 = fits.open("./data/IC5063/POLARIZATION_COMPARISON/S2_rot_crop.fits")
Stokes_IR = fits.open("./data/IC5063/IR/u2e65g01t_c0f_rot.fits")
##levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
#levelsMorganti = np.logspace(0.,1.97,5)/100.
# levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
# levelsMorganti = np.logspace(0.,1.97,5)/100.
#
#levels18GHz = levelsMorganti*Stokes_18GHz[0].data.max()
#A = overplot_radio(Stokes_UV, Stokes_18GHz)
#A.plot(levels=levels18GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/18GHz_overplot_forced.pdf',vec_scale=None)
# levels18GHz = levelsMorganti*Stokes_18GHz[0].data.max()
# A = overplot_radio(Stokes_UV, Stokes_18GHz)
# A.plot(levels=levels18GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/18GHz_overplot_forced.pdf',vec_scale=None)
##
#levels24GHz = levelsMorganti*Stokes_24GHz[0].data.max()
#B = overplot_radio(Stokes_UV, Stokes_24GHz)
#B.plot(levels=levels24GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/24GHz_overplot_forced.pdf',vec_scale=None)
# levels24GHz = levelsMorganti*Stokes_24GHz[0].data.max()
# B = overplot_radio(Stokes_UV, Stokes_24GHz)
# B.plot(levels=levels24GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/24GHz_overplot_forced.pdf',vec_scale=None)
##
#levels103GHz = levelsMorganti*Stokes_103GHz[0].data.max()
#C = overplot_radio(Stokes_UV, Stokes_103GHz)
#C.plot(levels=levels103GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/103GHz_overplot_forced.pdf',vec_scale=None)
# levels103GHz = levelsMorganti*Stokes_103GHz[0].data.max()
# C = overplot_radio(Stokes_UV, Stokes_103GHz)
# C.plot(levels=levels103GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/103GHz_overplot_forced.pdf',vec_scale=None)
##
#levels229GHz = levelsMorganti*Stokes_229GHz[0].data.max()
#D = overplot_radio(Stokes_UV, Stokes_229GHz)
#D.plot(levels=levels229GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/229GHz_overplot_forced.pdf',vec_scale=None)
# levels229GHz = levelsMorganti*Stokes_229GHz[0].data.max()
# D = overplot_radio(Stokes_UV, Stokes_229GHz)
# D.plot(levels=levels229GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/229GHz_overplot_forced.pdf',vec_scale=None)
##
#levels357GHz = levelsMorganti*Stokes_357GHz[0].data.max()
#E = overplot_radio(Stokes_UV, Stokes_357GHz)
#E.plot(levels=levels357GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/357GHz_overplot_forced.pdf',vec_scale=None)
# levels357GHz = levelsMorganti*Stokes_357GHz[0].data.max()
# E = overplot_radio(Stokes_UV, Stokes_357GHz)
# E.plot(levels=levels357GHz, SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/357GHz_overplot_forced.pdf',vec_scale=None)
##
#F = overplot_pol(Stokes_UV, Stokes_S2)
#F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='./plots/IC5063/S2_overplot_forced.pdf', norm=LogNorm(vmin=5e-20,vmax=5e-18))
# F = overplot_pol(Stokes_UV, Stokes_S2)
# F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='./plots/IC5063/S2_overplot_forced.pdf', norm=LogNorm(vmin=5e-20,vmax=5e-18))
G = overplot_pol(Stokes_UV, Stokes_IR, cmap='inferno')
G.plot(SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/IR_overplot_forced.pdf',vec_scale=None,norm=LogNorm(Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']/1e3,Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']),cmap='inferno_r')
G.plot(SNRp_cut=2.0, SNRi_cut=10.0, savename='./plots/IC5063/IR_overplot_forced.pdf', vec_scale=None,
norm=LogNorm(Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']/1e3, Stokes_IR[0].data.max()*Stokes_IR[0].header['photflam']), cmap='inferno_r')
#data_folder1 = "./data/M87/POS1/"
#plots_folder1 = "./plots/M87/POS1/"
#basename1 = "M87_020_log"
#M87_1_95 = fits.open(data_folder1+"M87_POS1_1995_FOC_combine_FWHM020.fits")
#M87_1_96 = fits.open(data_folder1+"M87_POS1_1996_FOC_combine_FWHM020.fits")
#M87_1_97 = fits.open(data_folder1+"M87_POS1_1997_FOC_combine_FWHM020.fits")
#M87_1_98 = fits.open(data_folder1+"M87_POS1_1998_FOC_combine_FWHM020.fits")
#M87_1_99 = fits.open(data_folder1+"M87_POS1_1999_FOC_combine_FWHM020.fits")
# data_folder1 = "./data/M87/POS1/"
# plots_folder1 = "./plots/M87/POS1/"
# basename1 = "M87_020_log"
# M87_1_95 = fits.open(data_folder1+"M87_POS1_1995_FOC_combine_FWHM020.fits")
# M87_1_96 = fits.open(data_folder1+"M87_POS1_1996_FOC_combine_FWHM020.fits")
# M87_1_97 = fits.open(data_folder1+"M87_POS1_1997_FOC_combine_FWHM020.fits")
# M87_1_98 = fits.open(data_folder1+"M87_POS1_1998_FOC_combine_FWHM020.fits")
# M87_1_99 = fits.open(data_folder1+"M87_POS1_1999_FOC_combine_FWHM020.fits")
#H = align_pol(np.array([M87_1_95,M87_1_96,M87_1_97,M87_1_98,M87_1_99]), norm=LogNorm())
#H.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder1+'animated_loop/'+basename1, norm=LogNorm())
#command("convert -delay 50 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder1, basename1))
# H = align_pol(np.array([M87_1_95,M87_1_96,M87_1_97,M87_1_98,M87_1_99]), norm=LogNorm())
# H.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder1+'animated_loop/'+basename1, norm=LogNorm())
# command("convert -delay 50 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder1, basename1))
#data_folder3 = "./data/M87/POS3/"
#plots_folder3 = "./plots/M87/POS3/"
#basename3 = "M87_020_log"
#M87_3_95 = fits.open(data_folder3+"M87_POS3_1995_FOC_combine_FWHM020.fits")
#M87_3_96 = fits.open(data_folder3+"M87_POS3_1996_FOC_combine_FWHM020.fits")
#M87_3_97 = fits.open(data_folder3+"M87_POS3_1997_FOC_combine_FWHM020.fits")
#M87_3_98 = fits.open(data_folder3+"M87_POS3_1998_FOC_combine_FWHM020.fits")
#M87_3_99 = fits.open(data_folder3+"M87_POS3_1999_FOC_combine_FWHM020.fits")
# data_folder3 = "./data/M87/POS3/"
# plots_folder3 = "./plots/M87/POS3/"
# basename3 = "M87_020_log"
# M87_3_95 = fits.open(data_folder3+"M87_POS3_1995_FOC_combine_FWHM020.fits")
# M87_3_96 = fits.open(data_folder3+"M87_POS3_1996_FOC_combine_FWHM020.fits")
# M87_3_97 = fits.open(data_folder3+"M87_POS3_1997_FOC_combine_FWHM020.fits")
# M87_3_98 = fits.open(data_folder3+"M87_POS3_1998_FOC_combine_FWHM020.fits")
# M87_3_99 = fits.open(data_folder3+"M87_POS3_1999_FOC_combine_FWHM020.fits")
#I = align_pol(np.array([M87_3_95,M87_3_96,M87_3_97,M87_3_98,M87_3_99]), norm=LogNorm())
#I.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder3+'animated_loop/'+basename3, norm=LogNorm())
#command("convert -delay 20 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder3, basename3))
# I = align_pol(np.array([M87_3_95,M87_3_96,M87_3_97,M87_3_98,M87_3_99]), norm=LogNorm())
# I.plot(SNRp_cut=5.0, SNRi_cut=50.0, savename=plots_folder3+'animated_loop/'+basename3, norm=LogNorm())
# command("convert -delay 20 -loop 0 {0:s}animated_loop/{1:s}*.pdf {0:s}animated_loop/{1:s}.gif".format(plots_folder3, basename3))

View File

@@ -1,23 +1,23 @@
#!/usr/bin/python3
from astropy.io import fits
import numpy as np
from lib.plots import overplot_chandra, overplot_pol, align_pol
from lib.plots import overplot_chandra, overplot_pol
from matplotlib.colors import LogNorm
Stokes_UV = fits.open("./data/MRK463E/5960/MRK463E_FOC_b0.05arcsec_c0.10arcsec.fits")
Stokes_IR = fits.open("./data/MRK463E/WFPC2/IR_rot_crop.fits")
Stokes_Xr = fits.open("./data/MRK463E/Chandra/4913/primary/acisf04913N004_cntr_img2.fits")
levels = np.geomspace(1.,99.,10)
levels = np.geomspace(1., 99., 10)
#A = overplot_chandra(Stokes_UV, Stokes_Xr)
#A.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot.pdf')
# A = overplot_chandra(Stokes_UV, Stokes_Xr)
# A.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot.pdf')
#B = overplot_chandra(Stokes_UV, Stokes_Xr, norm=LogNorm())
#B.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot_forced.pdf')
B = overplot_chandra(Stokes_UV, Stokes_Xr, norm=LogNorm())
B.plot(levels=levels, SNRp_cut=3.0, SNRi_cut=20.0, zoom=1, savename='./plots/MRK463E/Chandra_overplot_forced.pdf')
#C = overplot_pol(Stokes_UV, Stokes_IR)
#C.plot(SNRp_cut=3.0, SNRi_cut=20.0, savename='./plots/MRK463E/IR_overplot.pdf')
# C = overplot_pol(Stokes_UV, Stokes_IR)
# C.plot(SNRp_cut=3.0, SNRi_cut=20.0, savename='./plots/MRK463E/IR_overplot.pdf')
D = overplot_pol(Stokes_UV, Stokes_IR, norm=LogNorm())
D.plot(SNRp_cut=3.0, SNRi_cut=30.0, vec_scale=2, norm=LogNorm(1e-18,1e-15), savename='./plots/MRK463E/IR_overplot_forced.pdf')
D.plot(SNRp_cut=3.0, SNRi_cut=30.0, vec_scale=2, norm=LogNorm(1e-18, 1e-15), savename='./plots/MRK463E/IR_overplot_forced.pdf')