remove unnecessary header files, combine obs by sum of counts
This commit is contained in:
@@ -233,24 +233,24 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes(
|
||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||
)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
||||
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
|
||||
)
|
||||
|
||||
# Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate_North:
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
||||
)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
|
||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None)
|
||||
|
||||
# Compute polarimetric parameters (polarization degree and angle).
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg)
|
||||
|
||||
# Step 4:
|
||||
# Save image to FITS.
|
||||
@@ -267,7 +267,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
PA,
|
||||
s_PA,
|
||||
s_PA_P,
|
||||
headers,
|
||||
header_stokes,
|
||||
data_mask,
|
||||
figname,
|
||||
data_folder=data_folder,
|
||||
@@ -286,21 +286,21 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
||||
print(
|
||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
headers[0]["photplam"],
|
||||
header_stokes["photplam"],
|
||||
*sci_not(
|
||||
Stokes_hdul[0].data[data_mask].sum() * headers[0]["photflam"],
|
||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * headers[0]["photflam"],
|
||||
Stokes_hdul[0].data[data_mask].sum() * header_stokes["photflam"],
|
||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["photflam"],
|
||||
2,
|
||||
out=int,
|
||||
),
|
||||
)
|
||||
)
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]["p_int"] * 100.0, np.ceil(headers[0]["sP_int"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(headers[0]["pa_int"]), princ_angle(np.ceil(headers[0]["sPA_int"] * 10.0) / 10.0)))
|
||||
print("P_int = {0:.1f} ± {1:.1f} %".format(header_stokes["p_int"] * 100.0, np.ceil(header_stokes["sP_int"] * 1000.0) / 10.0))
|
||||
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(header_stokes["pa_int"]), princ_angle(np.ceil(header_stokes["sPA_int"] * 10.0) / 10.0)))
|
||||
# Background values
|
||||
print(
|
||||
"F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||
headers[0]["photplam"], *sci_not(I_bkg[0, 0] * headers[0]["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * headers[0]["photflam"], 2, out=int)
|
||||
header_stokes["photplam"], *sci_not(I_bkg[0, 0] * header_stokes["photflam"], np.sqrt(S_cov_bkg[0, 0][0, 0]) * header_stokes["photflam"], 2, out=int)
|
||||
)
|
||||
)
|
||||
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0] * 100.0, np.ceil(s_P_bkg[0, 0] * 1000.0) / 10.0))
|
||||
|
||||
@@ -93,7 +93,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
|
||||
|
||||
def save_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="", return_hdul=False
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, filename, data_folder="", return_hdul=False
|
||||
):
|
||||
"""
|
||||
Save computed polarimetry parameters to a single fits file,
|
||||
@@ -130,9 +130,8 @@ def save_Stokes(
|
||||
Only returned if return_hdul is True.
|
||||
"""
|
||||
# Create new WCS object given the modified images
|
||||
ref_header = headers[0]
|
||||
exp_tot = np.array([header["exptime"] for header in headers]).sum()
|
||||
new_wcs = WCS(ref_header).deepcopy()
|
||||
exp_tot = header_stokes['exptime']
|
||||
new_wcs = WCS(header_stokes).deepcopy()
|
||||
|
||||
if data_mask.shape != (1, 1):
|
||||
vertex = clean_ROI(data_mask)
|
||||
@@ -141,23 +140,23 @@ def save_Stokes(
|
||||
new_wcs.wcs.crpix = np.array(new_wcs.wcs.crpix) - vertex[0::-2]
|
||||
|
||||
header = new_wcs.to_header()
|
||||
header["TELESCOP"] = (ref_header["telescop"] if "TELESCOP" in list(ref_header.keys()) else "HST", "telescope used to acquire data")
|
||||
header["INSTRUME"] = (ref_header["instrume"] if "INSTRUME" in list(ref_header.keys()) else "FOC", "identifier for instrument used to acuire data")
|
||||
header["PHOTPLAM"] = (ref_header["photplam"], "Pivot Wavelength")
|
||||
header["PHOTFLAM"] = (ref_header["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
|
||||
header["TELESCOP"] = (header_stokes["telescop"] if "TELESCOP" in list(header_stokes.keys()) else "HST", "telescope used to acquire data")
|
||||
header["INSTRUME"] = (header_stokes["instrume"] if "INSTRUME" in list(header_stokes.keys()) else "FOC", "identifier for instrument used to acuire data")
|
||||
header["PHOTPLAM"] = (header_stokes["photplam"], "Pivot Wavelength")
|
||||
header["PHOTFLAM"] = (header_stokes["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
|
||||
header["EXPTOT"] = (exp_tot, "Total exposure time in sec")
|
||||
header["PROPOSID"] = (ref_header["proposid"], "PEP proposal identifier for observation")
|
||||
header["TARGNAME"] = (ref_header["targname"], "Target name")
|
||||
header["PROPOSID"] = (header_stokes["proposid"], "PEP proposal identifier for observation")
|
||||
header["TARGNAME"] = (header_stokes["targname"], "Target name")
|
||||
header["ORIENTAT"] = (np.arccos(new_wcs.wcs.pc[0, 0]) * 180.0 / np.pi, "Angle between North and the y-axis of the image")
|
||||
header["FILENAME"] = (filename, "Original filename")
|
||||
header["BKG_TYPE"] = (ref_header["BKG_TYPE"], "Bkg estimation method used during reduction")
|
||||
header["BKG_SUB"] = (ref_header["BKG_SUB"], "Amount of bkg subtracted from images")
|
||||
header["SMOOTH"] = (ref_header["SMOOTH"], "Smoothing method used during reduction")
|
||||
header["SAMPLING"] = (ref_header["SAMPLING"], "Resampling performed during reduction")
|
||||
header["P_INT"] = (ref_header["P_int"], "Integrated polarization degree")
|
||||
header["sP_INT"] = (ref_header["sP_int"], "Integrated polarization degree error")
|
||||
header["PA_INT"] = (ref_header["PA_int"], "Integrated polarization angle")
|
||||
header["sPA_INT"] = (ref_header["sPA_int"], "Integrated polarization angle error")
|
||||
header["BKG_TYPE"] = (header_stokes["BKG_TYPE"], "Bkg estimation method used during reduction")
|
||||
header["BKG_SUB"] = (header_stokes["BKG_SUB"], "Amount of bkg subtracted from images")
|
||||
header["SMOOTH"] = (header_stokes["SMOOTH"], "Smoothing method used during reduction")
|
||||
header["SAMPLING"] = (header_stokes["SAMPLING"], "Resampling performed during reduction")
|
||||
header["P_INT"] = (header_stokes["P_int"], "Integrated polarization degree")
|
||||
header["sP_INT"] = (header_stokes["sP_int"], "Integrated polarization degree error")
|
||||
header["PA_INT"] = (header_stokes["PA_int"], "Integrated polarization angle")
|
||||
header["sPA_INT"] = (header_stokes["sPA_int"], "Integrated polarization angle error")
|
||||
|
||||
# Crop Data to mask
|
||||
if data_mask.shape != (1, 1):
|
||||
|
||||
@@ -521,23 +521,23 @@ def get_error(data_array, headers, error_array=None, data_mask=None, sub_type=No
|
||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram", str(int(subtract_error>0.))
|
||||
sub_type, subtract_error = "histogram ", str(int(subtract_error>0.))
|
||||
elif isinstance(sub_type, str):
|
||||
if sub_type.lower() in ["auto"]:
|
||||
n_data_array, c_error_bkg, headers, background = bkg_fit(
|
||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram fit", "bkg+%.1fsigma"%subtract_error
|
||||
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
else:
|
||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "histogram", str(int(subtract_error>0.))
|
||||
sub_type, subtract_error = "histogram ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
elif isinstance(sub_type, tuple):
|
||||
n_data_array, c_error_bkg, headers, background = bkg_mini(
|
||||
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||
)
|
||||
sub_type, subtract_error = "minimal flux", str(int(subtract_error>0.))
|
||||
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
||||
else:
|
||||
print("Warning: Invalid subtype.")
|
||||
|
||||
@@ -964,7 +964,7 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.5, scale="pi
|
||||
raise ValueError("{} is not a valid smoothing option".format(smoothing))
|
||||
|
||||
for header in headers:
|
||||
header["SMOOTH"] = (" ".join([smoothing,FWHM_size,scale]),"Smoothing method used during reduction")
|
||||
header["SMOOTH"] = (" ".join([smoothing,FWHM_size,FWHM_scale]),"Smoothing method used during reduction")
|
||||
|
||||
return smoothed, error
|
||||
|
||||
@@ -1229,8 +1229,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
transmit *= transmit2 * transmit3 * transmit4
|
||||
pol_eff = np.array([globals()["pol_efficiency"]["pol0"], globals()["pol_efficiency"]["pol60"], globals()["pol_efficiency"]["pol120"]])
|
||||
|
||||
# Calculating correction factor
|
||||
# Calculating correction factor: allows all pol_filt to share same exptime and inverse sensitivity (taken to be the one from POL0)
|
||||
corr = np.array([1.0 * h["photflam"] / h["exptime"] for h in pol_headers]) * pol_headers[0]["exptime"] / pol_headers[0]["photflam"]
|
||||
pol_headers[1]['photflam'], pol_headers[1]['exptime'] = pol_headers[0]['photflam'], pol_headers[1]['exptime']
|
||||
pol_headers[2]['photflam'], pol_headers[2]['exptime'] = pol_headers[0]['photflam'], pol_headers[2]['exptime']
|
||||
|
||||
# Orientation and error for each polarizer
|
||||
# fmax = np.finfo(np.float64).max
|
||||
@@ -1441,25 +1443,34 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
Stokes_cov[1, 1] += s_Q2_axis + s_Q2_stat
|
||||
Stokes_cov[2, 2] += s_U2_axis + s_U2_stat
|
||||
|
||||
# Save values to single header
|
||||
header_stokes = pol_headers[0]
|
||||
|
||||
else:
|
||||
all_I_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_Q_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_U_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||
all_Stokes_cov = np.zeros((np.unique(rotate).size, 3, 3, data_array.shape[1], data_array.shape[2]))
|
||||
all_header_stokes = [{},]*np.unique(rotate).size
|
||||
|
||||
for i,rot in enumerate(np.unique(rotate)):
|
||||
rot_mask = (rotate == rot)
|
||||
all_I_stokes[i], all_Q_stokes[i], all_U_stokes[i], all_Stokes_cov[i] = compute_Stokes(data_array[rot_mask], error_array[rot_mask], data_mask, [headers[i] for i in np.arange(len(headers))[rot_mask]], FWHM=FWHM, scale=scale, smoothing=smoothing, transmitcorr=transmitcorr, integrate=False)
|
||||
all_I_stokes[i], all_Q_stokes[i], all_U_stokes[i], all_Stokes_cov[i], all_header_stokes[i] = compute_Stokes(data_array[rot_mask], error_array[rot_mask], data_mask, [headers[i] for i in np.arange(len(headers))[rot_mask]], FWHM=FWHM, scale=scale, smoothing=smoothing, transmitcorr=transmitcorr, integrate=False)
|
||||
all_exp = np.array([float(h['exptime']) for h in all_header_stokes])
|
||||
|
||||
I_stokes = all_I_stokes.sum(axis=0)/np.unique(rotate).size
|
||||
Q_stokes = all_Q_stokes.sum(axis=0)/np.unique(rotate).size
|
||||
U_stokes = all_U_stokes.sum(axis=0)/np.unique(rotate).size
|
||||
I_stokes = np.sum([exp*I for exp, I in zip(all_exp, all_I_stokes)],axis=0) / all_exp.sum()
|
||||
Q_stokes = np.sum([exp*Q for exp, Q in zip(all_exp, all_Q_stokes)],axis=0) / all_exp.sum()
|
||||
U_stokes = np.sum([exp*U for exp, U in zip(all_exp, all_U_stokes)],axis=0) / all_exp.sum()
|
||||
Stokes_cov = np.zeros((3, 3, I_stokes.shape[0], I_stokes.shape[1]))
|
||||
for i in range(3):
|
||||
Stokes_cov[i,i] = np.sum(all_Stokes_cov[:,i,i],axis=0)/np.unique(rotate).size
|
||||
Stokes_cov[i,i] = np.sum([exp*cov for exp, cov in zip(all_exp, all_Stokes_cov[:,i,i])], axis=0) / all_exp.sum()
|
||||
for j in [x for x in range(3) if x!=i]:
|
||||
Stokes_cov[i,j] = np.sqrt(np.sum(all_Stokes_cov[:,i,j]**2,axis=0)/np.unique(rotate).size)
|
||||
Stokes_cov[j,i] = np.sqrt(np.sum(all_Stokes_cov[:,j,i]**2,axis=0)/np.unique(rotate).size)
|
||||
Stokes_cov[i,j] = np.sqrt(np.sum([exp*cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:,i,j])], axis=0) / all_exp.sum())
|
||||
Stokes_cov[j,i] = np.sqrt(np.sum([exp*cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:,j,i])], axis=0) / all_exp.sum())
|
||||
|
||||
# Save values to single header
|
||||
header_stokes = all_header_stokes[0]
|
||||
header_stokes['exptime'] = all_exp.sum()
|
||||
|
||||
# Nan handling :
|
||||
fmax = np.finfo(np.float64).max
|
||||
@@ -1497,16 +1508,15 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||
)
|
||||
|
||||
for header in headers:
|
||||
header["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
|
||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov
|
||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes
|
||||
|
||||
|
||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
|
||||
"""
|
||||
Compute the polarization degree (in %) and angle (in deg) and their
|
||||
respective errors from given Stokes parameters.
|
||||
@@ -1523,8 +1533,8 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
+45/-45deg linear polarization intensity
|
||||
Stokes_cov : numpy.ndarray
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
headers : header list
|
||||
List of headers corresponding to the images in data_array.
|
||||
header_stokes : astropy.fits.header.Header
|
||||
Header file associated with the Stokes fluxes.
|
||||
----------
|
||||
Returns:
|
||||
P : numpy.ndarray
|
||||
@@ -1543,9 +1553,6 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
s_PA_P : numpy.ndarray
|
||||
Image (2D floats) containing the Poisson noise error on the
|
||||
polarization angle.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
for the new orientation angle.
|
||||
"""
|
||||
# Polarization degree and angle computation
|
||||
mask = I_stokes > 0.0
|
||||
@@ -1595,7 +1602,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
|
||||
# Compute the total exposure time so that
|
||||
# I_stokes*exp_tot = N_tot the total number of events
|
||||
exp_tot = np.array([header["exptime"] for header in headers]).sum()
|
||||
exp_tot = header_stokes["exptime"]
|
||||
# print("Total exposure time : {} sec".format(exp_tot))
|
||||
N_obs = I_stokes * exp_tot
|
||||
|
||||
@@ -1616,7 +1623,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||
|
||||
|
||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None):
|
||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None):
|
||||
"""
|
||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||
matrix to rotate Q, U of a given angle in degrees and update header
|
||||
@@ -1636,8 +1643,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
data_mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
List of headers corresponding to the reduced images.
|
||||
header_stokes : astropy.fits.header.Header
|
||||
Header file associated with the Stokes fluxes.
|
||||
SNRi_cut : float, optional
|
||||
Cut that should be applied to the signal-to-noise ratio on I.
|
||||
Any SNR < SNRi_cut won't be displayed. If None, cut won't be applied.
|
||||
@@ -1655,8 +1662,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
accounting for +45/-45deg linear polarization intensity.
|
||||
new_Stokes_cov : numpy.ndarray
|
||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
new_header_stokes : astropy.fits.header.Header
|
||||
Updated Header file associated with the Stokes fluxes accounting
|
||||
for the new orientation angle.
|
||||
new_data_mask : numpy.ndarray
|
||||
Updated 2D boolean array delimiting the data to work on.
|
||||
@@ -1674,11 +1681,12 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
U_stokes[i, j] = eps * np.sqrt(Stokes_cov[2, 2][i, j])
|
||||
|
||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||
ang = np.zeros((len(headers),))
|
||||
for i, head in enumerate(headers):
|
||||
pc = WCS(head).celestial.wcs.pc[0,0]
|
||||
ang[i] = -np.arccos(WCS(head).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
||||
ang = ang.mean()
|
||||
# ang = np.zeros((len(headers),))
|
||||
# for i, head in enumerate(headers):
|
||||
# pc = WCS(head).celestial.wcs.pc[0,0]
|
||||
# ang[i] = -np.arccos(WCS(head).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
||||
pc = WCS(header_stokes).celestial.wcs.pc[0,0]
|
||||
ang = -np.arccos(WCS(header_stokes).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
||||
alpha = np.pi / 180.0 * ang
|
||||
mrot = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(2.0 * alpha), np.sin(2.0 * alpha)], [0, -np.sin(2.0 * alpha), np.cos(2.0 * alpha)]])
|
||||
|
||||
@@ -1714,25 +1722,22 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
|
||||
|
||||
# Update headers to new angle
|
||||
new_headers = []
|
||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||
for header in headers:
|
||||
new_header = deepcopy(header)
|
||||
new_header["orientat"] = header["orientat"] + ang
|
||||
new_wcs = WCS(header).celestial.deepcopy()
|
||||
|
||||
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
||||
new_wcs.wcs.crpix = np.dot(mrot, new_wcs.wcs.crpix - old_center[::-1]) + new_center[::-1]
|
||||
new_wcs.wcs.set()
|
||||
for key, val in new_wcs.to_header().items():
|
||||
new_header.set(key, val)
|
||||
if new_wcs.wcs.pc[0, 0] == 1.0:
|
||||
new_header.set("PC1_1", 1.0)
|
||||
if new_wcs.wcs.pc[1, 1] == 1.0:
|
||||
new_header.set("PC2_2", 1.0)
|
||||
new_header["orientat"] = header["orientat"] + ang
|
||||
new_header_stokes = deepcopy(header_stokes)
|
||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
||||
new_wcs = WCS(header_stokes).celestial.deepcopy()
|
||||
|
||||
new_headers.append(new_header)
|
||||
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
||||
new_wcs.wcs.crpix = np.dot(mrot, new_wcs.wcs.crpix - old_center[::-1]) + new_center[::-1]
|
||||
new_wcs.wcs.set()
|
||||
for key, val in new_wcs.to_header().items():
|
||||
new_header_stokes.set(key, val)
|
||||
if new_wcs.wcs.pc[0, 0] == 1.0:
|
||||
new_header_stokes.set("PC1_1", 1.0)
|
||||
if new_wcs.wcs.pc[1, 1] == 1.0:
|
||||
new_header_stokes.set("PC2_2", 1.0)
|
||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
||||
|
||||
# Nan handling :
|
||||
fmax = np.finfo(np.float64).max
|
||||
@@ -1769,13 +1774,12 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||
)
|
||||
|
||||
for header in new_headers:
|
||||
header["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
new_header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
||||
new_header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||
|
||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_headers
|
||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes
|
||||
|
||||
|
||||
def rotate_data(data_array, error_array, data_mask, headers):
|
||||
|
||||
Reference in New Issue
Block a user