add gaussian fitting for better background estimation
This commit is contained in:
@@ -131,28 +131,29 @@ def main():
|
||||
display_crop = False
|
||||
# Error estimation
|
||||
error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15))
|
||||
subtract_error = False
|
||||
display_error = False
|
||||
# Data binning
|
||||
rebin = True
|
||||
pxsize = 0.10
|
||||
px_scale = 'arcsec' #pixel, arcsec or full
|
||||
pxsize = 10
|
||||
px_scale = 'pixel' #pixel, arcsec or full
|
||||
rebin_operation = 'sum' #sum or average
|
||||
# Alignement
|
||||
align_center = 'image' #If None will align image to image center
|
||||
display_data = False
|
||||
# Smoothing
|
||||
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
smoothing_FWHM = 0.20 #If None, no smoothing is done
|
||||
smoothing_FWHM = None #If None, no smoothing is done
|
||||
smoothing_scale = 'arcsec' #pixel or arcsec
|
||||
# Rotation
|
||||
rotate_stokes = True
|
||||
rotate_data = False #rotation to North convention can give erroneous results
|
||||
# Final crop
|
||||
crop = False #Crop to desired ROI
|
||||
final_display = False
|
||||
final_display = True
|
||||
# Polarization map output
|
||||
figname = 'NGC1068_FOC' #target/intrument name
|
||||
figtype = '_c_FWHM020' #additionnal informations
|
||||
figtype = '_bin10px' #additionnal informations
|
||||
SNRp_cut = 5. #P measurments with SNR>3
|
||||
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||
@@ -173,7 +174,7 @@ def main():
|
||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||
background = None
|
||||
if px_scale.lower() not in ['full','integrate']:
|
||||
data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, display=display_error, savename=figname+"_errors", plots_folder=plots_folder, return_background=True)
|
||||
data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, subtract_error=subtract_error, display=display_error, savename=figname+"_errors", plots_folder=plots_folder, return_background=True)
|
||||
|
||||
# Align and rescale images with oversampling.
|
||||
data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False)
|
||||
|
||||
@@ -70,7 +70,7 @@ im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0]
|
||||
#im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline")
|
||||
#im0 = ax.imshow(data_K['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through Kishimoto's pipeline")
|
||||
#im0 = ax.imshow(data_S['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through this pipeline")
|
||||
quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='b',alpha=0.75, label="PA through this pipeline")
|
||||
quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.2,color='b',alpha=0.75, label="PA through this pipeline")
|
||||
quiv1 = ax.quiver(data_K['X'],data_K['Y'],data_K['xy_U'],data_K['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='r',alpha=0.75, label="PA through Kishimoto's pipeline")
|
||||
|
||||
ax.set_title(r"$SNR_P \geq 5 \; & \; SNR_I \geq 30$")
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
Library function for background estimation steps of the reduction pipeline.
|
||||
|
||||
prototypes :
|
||||
- display_bkg(data, background, std_bkg, headers, histograms, bin_centers, rectangle, savename, plots_folder)
|
||||
- display_bkg(data, background, std_bkg, headers, histograms, binning, rectangle, savename, plots_folder)
|
||||
Display and save how the background noise is computed.
|
||||
- bkg_hist(data, error, mask, headers, sub_shape, display, savename, plots_folder) -> n_data_array, n_error_array, headers, background)
|
||||
Compute the error (noise) of the input array by computing the base mode of each image.
|
||||
@@ -18,8 +18,20 @@ from matplotlib.colors import LogNorm
|
||||
from matplotlib.patches import Rectangle
|
||||
from datetime import datetime
|
||||
from lib.plots import plot_obs
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
def display_bkg(data, background, std_bkg, headers, histograms=None, bin_centers=None, rectangle=None, savename=None, plots_folder="./"):
|
||||
def gauss(x, *p):
|
||||
N, mu, sigma = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2))
|
||||
|
||||
def gausspol(x, *p):
|
||||
N, mu, sigma, a, b, c, d = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2)) + a*np.log(x) + b/x + c*x + d
|
||||
|
||||
def bin_centers(edges):
|
||||
return (edges[1:]+edges[:-1])/2.
|
||||
|
||||
def display_bkg(data, background, std_bkg, headers, histograms=None, binning=None, coeff=None, rectangle=None, savename=None, plots_folder="./"):
|
||||
plt.rcParams.update({'font.size': 15})
|
||||
convert_flux = np.array([head['photflam'] for head in headers])
|
||||
date_time = np.array([headers[i]['date-obs']+';'+headers[i]['time-obs']
|
||||
@@ -52,12 +64,15 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, bin_centers
|
||||
if not(histograms is None):
|
||||
filt_obs = {"POL0":0, "POL60":0, "POL120":0}
|
||||
fig_h, ax_h = plt.subplots(figsize=(10,6), constrained_layout=True)
|
||||
for i, (hist, bins) in enumerate(zip(histograms, bin_centers)):
|
||||
for i, (hist, bins) in enumerate(zip(histograms, binning)):
|
||||
filt_obs[headers[i]['filtnam1']] += 1
|
||||
ax_h.plot(bins,hist,'+',color="C{0:d}".format(i),alpha=0.8,label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
|
||||
ax_h.plot([background[i],background[i]],[hist.min(), hist.max()],'x--',color="C{0:d}".format(i),alpha=0.8)
|
||||
if not(coeff is None):
|
||||
ax_h.plot(bins,gausspol(bins,*coeff[i]),'--',color="C{0:d}".format(i),alpha=0.8)
|
||||
ax_h.set_xscale('log')
|
||||
ax_h.set_xlim([background.mean()*1e-2,background.mean()*1e2])
|
||||
ax_h.set_ylim([0.,np.max([hist.max() for hist in histograms])])
|
||||
ax_h.set_xlim([np.min(background)*1e-2,np.max(background)*1e2])
|
||||
ax_h.set_xlabel(r"Count rate [$s^{-1}$]")
|
||||
ax_h.set_ylabel(r"Number of pixels in bin")
|
||||
ax_h.set_title("Histogram for each observation")
|
||||
@@ -97,8 +112,128 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, bin_centers
|
||||
|
||||
plt.show()
|
||||
|
||||
def sky_part(img):
|
||||
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int)%img.size)
|
||||
rand_pix = img.flatten()[rand_ind]
|
||||
# Intensity range
|
||||
sky_med = np.median(rand_pix)
|
||||
sig = np.min([img[img<sky_med].std(),img[img>sky_med].std()])
|
||||
sky_range = [sky_med-2.*sig, sky_med+sig]
|
||||
|
||||
def bkg_hist(data, error, mask, headers, sub_type=None, display=False, savename=None, plots_folder=""):
|
||||
sky = img[np.logical_and(img>=sky_range[0],img<=sky_range[1])]
|
||||
return sky, sky_range
|
||||
|
||||
def bkg_estimate(img, bins=None, chi2=None, coeff=None):
|
||||
if bins is None or chi2 is None or coeff is None:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
else:
|
||||
try:
|
||||
bins.append(int(3./2.*bins[-1]))
|
||||
except IndexError:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
hist, bin_edges = np.histogram(img[img>0], bins=bins[-1])
|
||||
binning = bin_centers(bin_edges)
|
||||
peak = binning[np.argmax(hist)]
|
||||
bins_fwhm = binning[hist>hist.max()/2.]
|
||||
fwhm = bins_fwhm[-1]-bins_fwhm[0]
|
||||
p0 = [hist.max(), peak, fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
try:
|
||||
popt, pcov = curve_fit(gausspol, binning, hist, p0=p0)
|
||||
except RuntimeError:
|
||||
popt = p0
|
||||
chi2.append(np.sum((hist - gausspol(binning,*popt))**2)/hist.size)
|
||||
coeff.append(popt)
|
||||
return bins, chi2, coeff
|
||||
|
||||
def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
----------
|
||||
Inputs:
|
||||
data : numpy.ndarray
|
||||
Array containing the data to study (2D float arrays).
|
||||
error : numpy.ndarray
|
||||
Array of images (2D floats, aligned and of the same shape) containing
|
||||
the error in each pixel of the observation images in data_array.
|
||||
mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
Headers associated with the images in data_array.
|
||||
display : boolean, optional
|
||||
If True, data_array will be displayed with a rectangle around the
|
||||
sub-image selected for background computation.
|
||||
Defaults to False.
|
||||
savename : str, optional
|
||||
Name of the figure the map should be saved to. If None, the map won't
|
||||
be saved (only displayed). Only used if display is True.
|
||||
Defaults to None.
|
||||
plots_folder : str, optional
|
||||
Relative (or absolute) filepath to the folder in wich the map will
|
||||
be saved. Not used if savename is None.
|
||||
Defaults to current folder.
|
||||
----------
|
||||
Returns:
|
||||
data_array : numpy.ndarray
|
||||
Array containing the data to study minus the background.
|
||||
headers : header list
|
||||
Updated headers associated with the images in data_array.
|
||||
error_array : numpy.ndarray
|
||||
Array containing the background values associated to the images in
|
||||
data_array.
|
||||
background : numpy.ndarray
|
||||
Array containing the pixel background value for each image in
|
||||
data_array.
|
||||
"""
|
||||
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, binning = [], []
|
||||
|
||||
for i, image in enumerate(data):
|
||||
#Compute the Count-rate histogram for the image
|
||||
sky, sky_range = sky_part(image[image>0.])
|
||||
|
||||
bins, chi2, coeff = bkg_estimate(sky)
|
||||
while bins[-1]<256:
|
||||
bins, chi2, coeff = bkg_estimate(sky, bins, chi2, coeff)
|
||||
hist, bin_edges = np.histogram(sky, bins=bins[-1])
|
||||
histograms.append(hist)
|
||||
binning.append(bin_centers(bin_edges))
|
||||
chi2, coeff = np.array(chi2), np.array(coeff)
|
||||
weights = 1/chi2**2
|
||||
weights /= weights.sum()
|
||||
|
||||
bkg = np.sum(weights*coeff[:,1])
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
|
||||
#wavelength dependence of the polariser filters
|
||||
#estimated to less than 1%
|
||||
err_wav = data[i]*0.01
|
||||
#difference in PSFs through each polarizers
|
||||
#estimated to less than 3%
|
||||
err_psf = data[i]*0.03
|
||||
#flatfielding uncertainties
|
||||
#estimated to less than 3%
|
||||
err_flat = data[i]*0.03
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2 + err_wav**2 + err_psf**2 + err_flat**2)
|
||||
|
||||
#Substract background
|
||||
if subtract_error:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
----------
|
||||
Inputs:
|
||||
@@ -144,7 +279,7 @@ def bkg_hist(data, error, mask, headers, sub_type=None, display=False, savename=
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, bin_centers = [], []
|
||||
histograms, binning, coeff = [], [], []
|
||||
|
||||
for i, image in enumerate(data):
|
||||
#Compute the Count-rate histogram for the image
|
||||
@@ -167,10 +302,20 @@ def bkg_hist(data, error, mask, headers, sub_type=None, display=False, savename=
|
||||
|
||||
hist, bin_edges = np.histogram(np.log(image[n_mask]),bins=n_bins)
|
||||
histograms.append(hist)
|
||||
bin_centers.append(np.exp((bin_edges[:-1]+bin_edges[1:])/2))
|
||||
binning.append(np.exp(bin_centers(bin_edges)))
|
||||
|
||||
#Take the background as the count-rate with the maximum number of pixels
|
||||
hist_max = bin_centers[-1][np.argmax(hist)]
|
||||
bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
|
||||
#hist_max = binning[-1][np.argmax(hist)]
|
||||
#bkg = np.sqrt(np.sum(image[np.abs(image-hist_max)/hist_max<0.5]**2)/image[np.abs(image-hist_max)/hist_max<0.5].size)
|
||||
|
||||
#Fit a gaussian to the log-intensity histogram
|
||||
bins_fwhm = binning[-1][hist>hist.max()/2.]
|
||||
fwhm = bins_fwhm[-1]-bins_fwhm[0]
|
||||
p0 = [hist.max(), binning[-1][np.argmax(hist)], fwhm, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
|
||||
coeff.append(popt)
|
||||
bkg = popt[1]
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
|
||||
@@ -187,18 +332,19 @@ def bkg_hist(data, error, mask, headers, sub_type=None, display=False, savename=
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2 + err_wav**2 + err_psf**2 + err_flat**2)
|
||||
|
||||
#Substract background
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
if subtract_error:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, bin_centers=bin_centers, savename=savename, plots_folder=plots_folder)
|
||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
def bkg_mini(data, error, mask, headers, sub_shape=(15,15), display=False, savename=None, plots_folder=""):
|
||||
def bkg_mini(data, error, mask, headers, sub_shape=(15,15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
@@ -290,8 +436,9 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15,15), display=False, saven
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2 + err_wav**2 + err_psf**2 + err_flat**2)
|
||||
|
||||
#Substract background
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
if subtract_error:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask,n_data_array[i] <= 0.01*bkg)] = 0.01*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg<1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
@@ -309,7 +309,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
if display.lower() in ['intensity']:
|
||||
# If no display selected, show intensity map
|
||||
display='i'
|
||||
vmin, vmax = np.min(stkI.data[mask]*convert_flux)/5., np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
vmin, vmax = np.max(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||
@@ -320,7 +320,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
# Display polarisation flux
|
||||
display='pf'
|
||||
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
|
||||
vmin, vmax = np.min(stkI.data[mask]*convert_flux)/5., np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
vmin, vmax = np.max(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||
@@ -1736,21 +1736,17 @@ class pol_map(object):
|
||||
self.display_selection = "total_flux"
|
||||
if self.display_selection.lower() in ['total_flux']:
|
||||
self.data = self.I*self.convert_flux
|
||||
try:
|
||||
vmin, vmax = np.min(self.data[self.cut])/5., np.max(self.data[self.data > 0.])
|
||||
except ValueError:
|
||||
vmax = np.max(self.data[self.data > 0.])
|
||||
vmin = vmax*1e-3
|
||||
vmin, vmax = np.max(np.sqrt(self.IQU_cov[0,0][self.cut])*self.convert_flux), np.max(self.data[self.data > 0.])
|
||||
norm = LogNorm(vmin, vmax)
|
||||
label = r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
|
||||
elif self.display_selection.lower() in ['pol_flux']:
|
||||
self.data = self.I*self.convert_flux*self.P
|
||||
vmin, vmax = np.min(self.I[self.cut]*self.convert_flux)/5., np.max(self.I[self.data > 0.]*self.convert_flux)
|
||||
vmin, vmax = np.max(np.sqrt(self.IQU_cov[0,0][self.cut])*self.convert_flux), np.max(self.I[self.data > 0.]*self.convert_flux)
|
||||
norm = LogNorm(vmin, vmax)
|
||||
label = r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
|
||||
elif self.display_selection.lower() in ['pol_deg']:
|
||||
self.data = self.P*100.
|
||||
vmin, vmax = 0., np.max(self.data[self.data > 0.])
|
||||
vmin, vmax = 0., 100. #np.max(self.data[self.data > 0.])
|
||||
label = r"$P$ [%]"
|
||||
elif self.display_selection.lower() in ['pol_ang']:
|
||||
self.data = princ_angle(self.PA)
|
||||
|
||||
@@ -53,7 +53,7 @@ log.setLevel('ERROR')
|
||||
import warnings
|
||||
from lib.deconvolve import deconvolve_im, gaussian_psf, gaussian2d, zeropad
|
||||
from lib.convex_hull import image_hull, clean_ROI
|
||||
from lib.background import bkg_hist, bkg_mini
|
||||
from lib.background import bkg_fit, bkg_hist, bkg_mini
|
||||
from lib.plots import plot_obs
|
||||
from lib.cross_correlation import phase_cross_correlation
|
||||
|
||||
@@ -409,8 +409,8 @@ def deconvolve_array(data_array, headers, psf='gaussian', FWHM=1., scale='px',
|
||||
|
||||
|
||||
def get_error(data_array, headers, error_array=None, data_mask=None,
|
||||
sub_type=None, display=False, savename=None, plots_folder="",
|
||||
return_background=False):
|
||||
sub_type=None, subtract_error=True, display=False, savename=None,
|
||||
plots_folder="", return_background=False):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
@@ -431,10 +431,11 @@ def get_error(data_array, headers, error_array=None, data_mask=None,
|
||||
If None, will be initialized with a full true mask.
|
||||
Defaults to None.
|
||||
sub_type : str or int or tuple, optional
|
||||
If str, statistic rule to be used for the number of bins in counts/s.
|
||||
If 'auto', look for optimal binning and fit intensity histogram with au gaussian.
|
||||
If str or None, statistic rule to be used for the number of bins in counts/s.
|
||||
If int, number of bins for the counts/s histogram.
|
||||
If tuple, shape of the sub-image to look for. Must be odd.
|
||||
Defaults to "Freedman-Diaconis".
|
||||
Defaults to None.
|
||||
display : boolean, optional
|
||||
If True, data_array will be displayed with a rectangle around the
|
||||
sub-image selected for background computation.
|
||||
@@ -468,18 +469,26 @@ def get_error(data_array, headers, error_array=None, data_mask=None,
|
||||
# Crop out any null edges
|
||||
if error_array is None:
|
||||
error_array = np.zeros(data_array.shape)
|
||||
n_data_array, n_error_array = deepcopy(data_array), deepcopy(error_array)
|
||||
data, error = deepcopy(data_array), deepcopy(error_array)
|
||||
if not data_mask is None:
|
||||
data, error, mask = n_data_array, n_error_array, deepcopy(data_mask)
|
||||
mask = deepcopy(data_mask)
|
||||
else:
|
||||
data, error, _ = crop_array(n_data_array, headers, n_error_array, step=5, null_val=0., inside=False)
|
||||
mask = np.ones(data[0].shape, dtype=bool)
|
||||
data_c, error_c, _ = crop_array(data, headers, error, step=5, null_val=0., inside=False)
|
||||
mask_c = np.ones(data_c[0].shape, dtype=bool)
|
||||
for i,(data_ci, error_ci) in enumerate(zip(data_c, error_c)):
|
||||
data[i], error[i] = zeropad(data_ci, data[i].shape), zeropad(error_ci, error[i].shape)
|
||||
mask = zeropad(mask_c, data[0].shape).astype(bool)
|
||||
background = np.zeros((data.shape[0]))
|
||||
|
||||
if (sub_type is None) or (type(sub_type)==str):
|
||||
n_data_array, n_error_array, headers, background = bkg_hist(data, error, mask, headers, sub_type=sub_type, display=display, savename=savename, plots_folder=plots_folder)
|
||||
if (sub_type is None):
|
||||
n_data_array, n_error_array, headers, background = bkg_hist(data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||
elif type(sub_type)==str:
|
||||
if sub_type.lower() in ['auto']:
|
||||
n_data_array, n_error_array, headers, background = bkg_fit(data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||
else:
|
||||
n_data_array, n_error_array, headers, background = bkg_hist(data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||
elif type(sub_type)==tuple:
|
||||
n_data_array, n_error_array, headers, background = bkg_mini(data, error, mask, headers, sub_shape=sub_type, display=display, savename=savename, plots_folder=plots_folder)
|
||||
n_data_array, n_error_array, headers, background = bkg_mini(data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder)
|
||||
else:
|
||||
print("Warning: Invalid subtype.")
|
||||
|
||||
@@ -674,7 +683,7 @@ def align_data(data_array, headers, error_array=None, background=None,
|
||||
raise ValueError("All images in data_array must have same shape as\
|
||||
ref_data")
|
||||
if (error_array is None) or (background is None):
|
||||
_, error_array, headers, background = get_error_hist(data_array, headers, return_background=True)
|
||||
_, error_array, headers, background = get_error(data_array, headers, sub_type=(10,10), return_background=True)
|
||||
|
||||
# Crop out any null edges
|
||||
#(ref_data must be cropped as well)
|
||||
|
||||
Reference in New Issue
Block a user