bit of doctring and fix on test_center

This commit is contained in:
2024-09-13 16:42:06 +02:00
parent 08cb65200a
commit 10577352d4
2 changed files with 101 additions and 18 deletions

View File

@@ -4,6 +4,14 @@ import numpy as np
def rot2D(ang):
"""
Return the 2D rotation matrix of given angle in degrees
----------
Inputs:
ang : float
Angle in degrees
----------
Returns:
rot_mat : numpy.ndarray
2D matrix of shape (2,2) to perform vector rotation at angle "ang".
"""
alpha = np.pi * ang / 180
return np.array([[np.cos(alpha), np.sin(alpha)], [-np.sin(alpha), np.cos(alpha)]])
@@ -13,6 +21,14 @@ def princ_angle(ang):
"""
Return the principal angle in the 0° to 180° quadrant as PA is always
defined at p/m 180°.
----------
Inputs:
ang : float, numpy.ndarray
Angle in degrees. Can be an array of angles.
----------
Returns:
princ_ang : float, numpy.ndarray
Principal angle in the 0°-180° quadrant in the same shape as input.
"""
if not isinstance(ang, np.ndarray):
A = np.array([ang])
@@ -32,6 +48,21 @@ def PCconf(QN, UN, QN_ERR, UN_ERR):
"""
Compute the confidence level for 2 parameters polarisation degree and
polarisation angle from the PCUBE analysis.
----------
Inputs:
QN : float, numpy.ndarray
Normalized Q Stokes flux.
UN : float, numpy.ndarray
Normalized U Stokes flux.
QN_ERR : float, numpy.ndarray
Normalized error on Q Stokes flux.
UN_ERR : float, numpy.ndarray
Normalized error on U Stokes flux.
----------
Returns:
conf : numpy.ndarray
2D matrix of same shape as input containing the confidence on the polarization
computation between 0 and 1 for 2 parameters of interest (Q and U Stokes fluxes).
"""
mask = np.logical_and(QN_ERR > 0.0, UN_ERR > 0.0)
conf = np.full(QN.shape, -1.0)
@@ -43,6 +74,19 @@ def PCconf(QN, UN, QN_ERR, UN_ERR):
def CenterConf(mask, PA, sPA):
"""
Compute the confidence map for the position of the center of emission.
----------
Inputs:
mask : bool, numpy.ndarray
Mask of the polarization vectors from which the center of emission should be drawn.
PA : float, numpy.ndarray
2D matrix containing the computed polarization angle.
sPA : float, numpy.ndarray
2D matrix containing the total uncertainties on the polarization angle.
----------
Returns:
conf : numpy.ndarray
2D matrix of same shape as input containing the confidence on the polarization
computation between 0 and 1 for 2 parameters of interest (Q and U Stokes fluxes).
"""
chi2 = np.full(PA.shape, np.nan)
conf = np.full(PA.shape, -1.0)
@@ -64,17 +108,36 @@ def CenterConf(mask, PA, sPA):
from scipy.special import gammainc
conf[np.isfinite(PA)] = 1.0 - gammainc(0.5, 0.5 * chi2[np.isfinite(PA)])
result = minimize(chisq, np.array(PA.shape) / 2.0, bounds=[(0, PA.shape[1]), (0.0, PA.shape[0])])
c0 = np.unravel_index(np.argmax(conf), conf.shape)[::-1]
result = minimize(chisq, c0, bounds=[(0, PA.shape[1]), (0.0, PA.shape[0])])
if result.success:
print("Center of emission found")
else:
print("Center of emission not found")
print("Center of emission not found", result)
return conf, result.x
def sci_not(v, err, rnd=1, out=str):
"""
Return the scientifque error notation as a string.
Return the scientific error notation as a string.
----------
Inputs:
v : float
Value to be transformed into scientific notation.
err : float
Error on the value to be transformed into scientific notation.
rnd : int
Number of significant numbers for the scientific notation.
Default to 1.
out : str or other
Format in which the notation should be returned. "str" means the notation
is returned as a single string, "other" means it is returned as a list of "str".
Default to str.
----------
Returns:
conf : numpy.ndarray
2D matrix of same shape as input containing the confidence on the polarization
computation between 0 and 1 for 2 parameters of interest (Q and U Stokes fluxes).
"""
power = -int(("%E" % v)[-3:]) + 1
output = [r"({0}".format(round(v * 10**power, rnd)), round(v * 10**power, rnd)]
@@ -95,6 +158,16 @@ def wcs_PA(PC21, PC22):
"""
Return the position angle in degrees to the North direction of a wcs
from the values of coefficient of its transformation matrix.
----------
Inputs:
PC21 : float
Value of the WCS matric PC[1,0]
PC22 : float
Value of the WCS matric PC[1,1]
----------
Returns:
orient : float
Angle in degrees between the North direction and the Up direction of the WCS.
"""
if (abs(PC21) > abs(PC22)) and (PC21 >= 0):
orient = -np.arccos(PC22) * 180.0 / np.pi

View File

@@ -23,15 +23,20 @@ NGC1068snr[NGC1068["POL_DEG_ERR"].data > 0.0] = (
)
NGC1068centconf, NGC1068center = CenterConf(NGC1068conf > 0.99, NGC1068["POL_ANG"].data, NGC1068["POL_ANG_ERR"].data)
NGC1068pos = WCS(NGC1068[0].header).pixel_to_world(*NGC1068center)
figngc, axngc = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(NGC1068[0].header)))
figngc, axngc = plt.subplots(1, 2, layout="tight", figsize=(18, 9), subplot_kw=dict(projection=WCS(NGC1068[0].header)), sharex=True, sharey=True)
axngc[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours")
imngc = axngc[0].imshow(NGC1068["I_STOKES"].data * NGC1068["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno")
vmin, vmax = (
0.5 * np.median(NGC1068["I_STOKES"].data[NGC1068mask]) * NGC1068[0].header["PHOTFLAM"],
np.max(NGC1068["I_STOKES"].data[NGC1068mask]) * NGC1068[0].header["PHOTFLAM"],
)
imngc = axngc[0].imshow(NGC1068["I_STOKES"].data * NGC1068["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(vmin, vmax), cmap="inferno")
ngcsnrcont = axngc[0].contour(NGC1068snr, levelssnr, colors="b")
ngcconfcont = axngc[0].contour(NGC1068conf, levelsconf, colors="r")
ngcconfcenter = axngc[0].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center")
ngcconfcentcont = axngc[0].contour(NGC1068centconf, 1.-levelsconf, colors="k")
ngcconfcenter = axngc[0].plot(*NGC1068center, marker="+",color="gray", label="Best confidence for center: {0}".format(NGC1068pos.to_string('hmsdms')))
ngcconfcentcont = axngc[0].contour(NGC1068centconf, [0.01], colors="gray")
handles, labels = axngc[0].get_legend_handles_labels()
labels.append("SNR contours")
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcsnrcont.collections[0].get_edgecolor()[0]))
@@ -43,14 +48,14 @@ axngc[0].legend(handles=handles, labels=labels)
axngc[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map")
ngccent = axngc[1].imshow(NGC1068centconf, vmin=0.0, cmap="inferno")
ngccentcont = axngc[1].contour(NGC1068centconf, 1.-levelsconf, colors="grey")
ngccentcenter = axngc[1].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center")
ngccentcont = axngc[1].contour(NGC1068centconf, [0.01], colors="gray")
ngccentcenter = axngc[1].plot(*NGC1068center, marker="+",color="gray", label="Best confidence for center: {0}".format(NGC1068pos.to_string('hmsdms')))
handles, labels = axngc[1].get_legend_handles_labels()
labels.append("CONF99 contour")
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngccentcont.collections[0].get_edgecolor()[0]))
axngc[1].legend(handles=handles, labels=labels)
figngc.savefig("NGC1068_center.pdf",dpi=150,facecolor="None")
figngc.savefig("NGC1068_center.pdf", dpi=150, facecolor="None")
###################################################################################################
@@ -68,16 +73,21 @@ MRK463Esnr[MRK463E["POL_DEG_ERR"].data > 0.0] = (
)
MRK463Ecentconf, MRK463Ecenter = CenterConf(MRK463Econf > 0.99, MRK463E["POL_ANG"].data, MRK463E["POL_ANG_ERR"].data)
MRK463Epos = WCS(MRK463E[0].header).pixel_to_world(*MRK463Ecenter)
figmrk, axmrk = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(MRK463E[0].header)))
figmrk, axmrk = plt.subplots(1, 2, layout="tight", figsize=(18, 9), subplot_kw=dict(projection=WCS(MRK463E[0].header)), sharex=True, sharey=True)
axmrk[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours")
immrk = axmrk[0].imshow(MRK463E["I_STOKES"].data * MRK463E["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno")
vmin, vmax = (
0.5 * np.median(MRK463E["I_STOKES"].data[MRK463Emask]) * MRK463E[0].header["PHOTFLAM"],
np.max(MRK463E["I_STOKES"].data[MRK463Emask]) * MRK463E[0].header["PHOTFLAM"],
)
immrk = axmrk[0].imshow(MRK463E["I_STOKES"].data * MRK463E["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(vmin, vmax), cmap="inferno")
mrksnrcont = axmrk[0].contour(MRK463Esnr, levelssnr, colors="b")
mrkconfcont = axmrk[0].contour(MRK463Econf, levelsconf, colors="r")
mrkconfcenter = axmrk[0].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center")
mrkconfcentcont = axmrk[0].contour(MRK463Ecentconf, 1.-levelsconf, colors="k")
handles, labels = axmrk[1].get_legend_handles_labels()
mrkconfcenter = axmrk[0].plot(*MRK463Ecenter, marker="+",color="gray", label="Best confidence for center: {0}".format(MRK463Epos.to_string('hmsdms')))
mrkconfcentcont = axmrk[0].contour(MRK463Ecentconf, [0.01], colors="gray")
handles, labels = axmrk[0].get_legend_handles_labels()
labels.append("SNR contours")
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrksnrcont.collections[0].get_edgecolor()[0]))
labels.append("CONF99 contour")
@@ -88,12 +98,12 @@ axmrk[0].legend(handles=handles, labels=labels)
axmrk[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map")
mrkcent = axmrk[1].imshow(MRK463Ecentconf, vmin=0.0, cmap="inferno")
mrkcentcont = axmrk[1].contour(MRK463Ecentconf, 1.-levelsconf, colors="grey")
mrkcentcenter = axmrk[1].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center")
mrkcentcont = axmrk[1].contour(MRK463Ecentconf, [0.01], colors="gray")
mrkcentcenter = axmrk[1].plot(*MRK463Ecenter, marker="+",color="gray", label="Best confidence for center: {0}".format(MRK463Epos.to_string('hmsdms')))
handles, labels = axmrk[1].get_legend_handles_labels()
labels.append("CONF99 contour")
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkcentcont.collections[0].get_edgecolor()[0]))
axmrk[1].legend(handles=handles, labels=labels)
figmrk.savefig("MRK463E_center.pdf",dpi=150,facecolor="None")
figmrk.savefig("MRK463E_center.pdf", dpi=150, facecolor="None")
plt.show()