1
0
Files
KozaiLidov/lib/plots.py
2021-11-11 13:23:31 +01:00

75 lines
2.5 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
"""
Implementation of the plotting and visualization functions.
"""
import numpy as np
import time
import matplotlib.pyplot as plt
class DynamicUpdate():
#Suppose we know the x range
min_x = -10
max_x = 10
plt.ion()
def __init__(self, dyn_syst):
self.dyn_syst = dyn_syst
def set_lims(self, factor=1.5):
self.ax.set_xlim(factor*self.min_x, factor*self.max_x)
self.ax.set_ylim(factor*self.min_x, factor*self.max_x)
self.ax.set_zlim(factor*self.min_x, factor*self.max_x)
def on_launch(self):
#Set up plot
self.fig = plt.figure(figsize=(10,10))
self.ax = self.fig.add_subplot(projection='3d')
self.lines = []
for i,body in enumerate(self.dyn_syst.bodylist):
x, y, z = body.q
lines, = self.ax.plot([x],[y],[z],'o',color="C{0:d}".format(i),label="{0:s}".format(str(body)))
self.lines.append(lines)
self.lines = np.array(self.lines)
#Autoscale on unknown axis and known lims on the other
self.ax.set_autoscaley_on(True)
self.set_lims()
#Other stuff
self.ax.grid()
self.ax.legend()
def on_running(self, dyn_syst, step=None, label=None):
xdata, ydata, zdata = dyn_syst.get_positions()
values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1))
self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x])
self.set_lims()
#Update data (with the new _and_ the old points)
for i,body in enumerate(dyn_syst.bodylist):
x, y, z = body.q
self.lines[i].set_data_3d([x], [y], [z])
if not label is None:
self.ax.set_title(label)
#Need both of these in order to rescale
self.ax.relim()
self.ax.autoscale_view()
#We need to draw *and* flush
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if not step is None and step%1000==0:
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
#Example
def __call__(self):
import numpy as np
import time
self.on_launch()
xdata = []
ydata = []
for x in np.arange(0,10,0.5):
xdata.append(x)
ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2))
self.on_running(xdata, ydata)
time.sleep(1)
return xdata, ydata