1
0
Files
KozaiLidov/lib/objects.py
2021-11-19 14:32:37 +01:00

146 lines
4.5 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
"""
Class definition for physical attribute
"""
from os import system
import numpy as np
from lib.plots import DynamicUpdate
from lib.units import *
class Body:
def __init__(self, mass, position, velocity):
self.m = mass
self.q = position
self.v = velocity
self.p = velocity * mass
self.a = np.zeros(3)
self.ap = np.zeros(3)
self.j = np.zeros(3)
self.jp = np.zeros(3)
self.qp = np.zeros(3)
self.vp = np.zeros(3)
def __repr__(self): # Called upon "print(body)"
return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m / Ms, self.q, self.v)
def __str__(self): # Called upon "str(body)"
return r"Body of mass: {0:.2f} $M_\odot$".format(self.m / Ms)
class System(Body):
def __init__(self, bodylist, blackstyle=True):
self.blackstyle = blackstyle # for dark mode in plot
self.bodylist = np.array(bodylist)
self.time = 0 # lifetime of system
self.m = self.M
self.q = self.COM
self.v = self.COMV
def __repr__(self): # Called upon "print(system)"
return str([print(body) for body in self.bodylist])
def __str__(self): # Called upon "str(system)"
return str([str(body) for body in self.bodylist])
@property
def get_masses(self): # return the masses of each object
return np.array([body.m for body in self.bodylist])
@property
def get_positions(self): # return the positions of the bodies
xdata = np.array([body.q[0] for body in self.bodylist])
ydata = np.array([body.q[1] for body in self.bodylist])
zdata = np.array([body.q[2] for body in self.bodylist])
return xdata, ydata, zdata
@property
def get_velocities(self): # return the positions of the bodies
vxdata = np.array([body.v[0] for body in self.bodylist])
vydata = np.array([body.v[1] for body in self.bodylist])
vzdata = np.array([body.v[2] for body in self.bodylist])
return vxdata, vydata, vzdata
@property
def get_momenta(self): # return the momenta of the bodies
pxdata = np.array([body.p[0] for body in self.bodylist])
pydata = np.array([body.p[1] for body in self.bodylist])
pzdata = np.array([body.p[2] for body in self.bodylist])
return pxdata, pydata, pzdata
@property
def M(self): # return total system mass
mass = 0
for body in self.bodylist:
mass = mass + body.m
return mass
@property
def COM(self): # return center of mass in cartesian np_array
coord = np.zeros(3)
for body in self.bodylist:
coord = coord + body.m * body.q
coord = coord / self.M
return coord
@property
def COMV(self): # return center of mass velocity in cartesian np_array
coord = np.zeros(3)
for body in self.bodylist:
coord = coord + body.p
coord = coord / self.M
return coord
def COMShift(self): # Shift coordinates of bodies in system to COM frame and set COM at rest
for body in self.bodylist:
body.q = body.q - self.COM
body.p = body.p - self.COMV
@property
def L(self): # return angular momentum of bodies in system
L = np.zeros(3)
for body in self.bodylist:
L = L + np.cross(body.q, body.p)
return L
@property
def E(self): # return total energy of bodies in system
T = 0
W = 0
for body in self.bodylist:
T = T + 1. / 2. * body.m * np.linalg.norm(body.v) ** 2
for otherbody in self.bodylist:
if body != otherbody:
rij = np.linalg.norm(body.q - otherbody.q)
W = W - G * body.m * otherbody.m / rij
E = T + W
return E
@property
def mu(self):
sum = 0
prod = 1
for body in self.bodylist:
prod = prod * body.m
mu = prod / self.M
return mu
@property
def ex(self): # exentricity of system (if composed of 2 bodies)
if len(self.bodylist) != 2:
return np.nan
else:
k = (2. * self.E * (np.linalg.norm(self.L) ** 2)) / ((G ** 2) * (self.M ** 2) * (self.mu ** 3)) + 1.
return k
@property
def sma(self): # semi major axis of system (if composed of 2 bodies)
if len(self.bodylist) != 2:
return np.nan
else:
sma = -G * self.M * self.mu / (2. * self.E)
return sma