#!/usr/bin/python # -*- coding:utf-8 -*- """ Class definition for physical attribute """ from os import system import numpy as np from lib.plots import DynamicUpdate from lib.units import * class Body: def __init__(self, mass, position, velocity): self.m = mass self.q = position self.v = velocity self.p = velocity * mass self.a = np.zeros(3) self.ap = np.zeros(3) self.j = np.zeros(3) self.jp = np.zeros(3) self.qp = np.zeros(3) self.vp = np.zeros(3) def __repr__(self): # Called upon "print(body)" return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m / Ms, self.q, self.v) def __str__(self): # Called upon "str(body)" return r"Body of mass: {0:.2f} $M_\odot$".format(self.m / Ms) class System(Body): def __init__(self, bodylist, blackstyle=True): self.blackstyle = blackstyle # for dark mode in plot self.bodylist = np.array(bodylist) self.time = 0 # lifetime of system self.m = self.M self.q = self.COM self.v = self.COMV def __repr__(self): # Called upon "print(system)" return str([print(body) for body in self.bodylist]) def __str__(self): # Called upon "str(system)" return str([str(body) for body in self.bodylist]) @property def get_masses(self): # return the masses of each object return np.array([body.m for body in self.bodylist]) @property def get_positions(self): # return the positions of the bodies xdata = np.array([body.q[0] for body in self.bodylist]) ydata = np.array([body.q[1] for body in self.bodylist]) zdata = np.array([body.q[2] for body in self.bodylist]) return xdata, ydata, zdata @property def get_velocities(self): # return the positions of the bodies vxdata = np.array([body.v[0] for body in self.bodylist]) vydata = np.array([body.v[1] for body in self.bodylist]) vzdata = np.array([body.v[2] for body in self.bodylist]) return vxdata, vydata, vzdata @property def get_momenta(self): # return the momenta of the bodies pxdata = np.array([body.p[0] for body in self.bodylist]) pydata = np.array([body.p[1] for body in self.bodylist]) pzdata = np.array([body.p[2] for body in self.bodylist]) return pxdata, pydata, pzdata @property def M(self): # return total system mass mass = 0 for body in self.bodylist: mass = mass + body.m return mass @property def COM(self): # return center of mass in cartesian np_array coord = np.zeros(3) for body in self.bodylist: coord = coord + body.m * body.q coord = coord / self.M return coord @property def COMV(self): # return center of mass velocity in cartesian np_array coord = np.zeros(3) for body in self.bodylist: coord = coord + body.p coord = coord / self.M return coord def COMShift(self): # Shift coordinates of bodies in system to COM frame and set COM at rest for body in self.bodylist: body.q = body.q - self.COM body.p = body.p - self.COMV @property def L(self): # return angular momentum of bodies in system L = np.zeros(3) for body in self.bodylist: L = L + np.cross(body.q, body.p) return L @property def E(self): # return total energy of bodies in system T = 0 W = 0 for body in self.bodylist: T = T + 1. / 2. * body.m * np.linalg.norm(body.v) ** 2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.q - otherbody.q) W = W - G * body.m * otherbody.m / rij E = T + W return E @property def mu(self): sum = 0 prod = 1 for body in self.bodylist: prod = prod * body.m mu = prod / self.M return mu @property def ex(self): # exentricity of system (if composed of 2 bodies) if len(self.bodylist) != 2: return np.nan else: k = (2. * self.E * (np.linalg.norm(self.L) ** 2)) / ((G ** 2) * (self.M ** 2) * (self.mu ** 3)) + 1. return k @property def sma(self): # semi major axis of system (if composed of 2 bodies) if len(self.bodylist) != 2: return np.nan else: sma = -G * self.M * self.mu / (2. * self.E) return sma