1
0
Files
KozaiLidov/main.py
Thibault Barnouin 24e544c43a play with IC
2021-11-05 18:35:51 +01:00

55 lines
1.9 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
from sys import exit as sysexit
import numpy as np
import matplotlib.pyplot as plt
from lib.integrator import frogleap
from lib.objects import Body, System
globals()['G'] = 6.67e-11 #Gravitational constant in SI units
globals()['Ms'] = 2e30 #Solar mass in kg
globals()['au'] = 1.5e11 #Astronomical unit in m
def main():
#initialisation
m = np.array([1, 1, 0.1])*Ms # Masses in Solar mass
a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units
e = np.array([0., 0., 1./4.]) # Eccentricity
psi = np.array([0., 0., 80.])*np.pi/180. # Inclination of the orbital plane in degrees
x1 = np.array([-1., 0., 0.])*a[0]
x2 = np.array([1., 0., 0.])*a[1]
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2]
q = np.array([x1, x2, x3])
v1 = np.array([0., -1./3*np.sqrt(G*(m[0]+m[1])*a[0]*(1-e[0]**2)*(1+e[0])**2/np.sum(q[0]**2)), 0.])
v2 = np.array([0., 1./3*np.sqrt(G*(m[0]+m[1])*a[1]*(1-e[1]**2)*(1+e[1])**2/np.sum(q[1]**2)), 0.])
v3 = np.array([0., np.sqrt(G*(m[0]+m[1])*(2./np.sqrt(np.sum(x3**2))-1./a[2])), 0.])
v = np.array([v1, v2, v3])
bodylist = []
for i in range(3):
bodylist.append(Body(m[i], q[i], v[i]))
dyn_syst = System(bodylist)
dyn_syst.COMShift()
duration, step = 10*3e7, 5e5
E, L = frogleap(duration, step, dyn_syst, recover_param=True, display=True)
fig1 = plt.figure(figsize=(30,15))
ax1 = fig1.add_subplot(111)
ax1.plot(np.arange(E.shape[0])/duration, E, label=r"$E_m$")
ax1.legend()
fig1.savefig("plots/Em.png",bbox_inches="tight")
fig2 = plt.figure(figsize=(30,15))
ax2 = fig2.add_subplot(111)
ax2.plot(np.arange(L.shape[0])/duration, np.sum(L**2,axis=1), label=r"$L^2$")
ax2.legend()
fig2.savefig("plots/L2.png",bbox_inches="tight")
plt.show(block=True)
return 0
if __name__ == '__main__':
sysexit(main())