modify initialisation parameters and add gif animation saving
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -1,3 +1,6 @@
|
||||
# Data temp directory
|
||||
tmp/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
||||
@@ -5,8 +5,9 @@ Implementation of the various integrators for numerical integration.
|
||||
|
||||
Comes from the assumption that the problem is analytically defined in position-momentum (q-p) space for a given hamiltonian H.
|
||||
"""
|
||||
import numpy as np
|
||||
from os import system
|
||||
import time
|
||||
import numpy as np
|
||||
from lib.plots import DynamicUpdate
|
||||
|
||||
globals()["G"] = 1. #Gravitationnal constant
|
||||
@@ -19,7 +20,7 @@ def dp_dt(m_array, q_array):
|
||||
dp_array = np.zeros(q_array.shape)
|
||||
for i in range(q_array.shape[0]):
|
||||
q_j = np.delete(q_array, i, 0)
|
||||
m_j = np.delete(m_array, i).reshape((q_j.shape[0],1))
|
||||
m_j = np.delete(m_array, i, 0)#.reshape((q_j.shape[0],1))
|
||||
dp_array[i] = -G*m_array[i]*np.sum(m_j/np.sum(np.sqrt(np.sum((q_j-q_array[i])**2, axis=0)))**3*(q_j-q_array[i]), axis=0)
|
||||
dp_array[np.isnan(dp_array)] = 0.
|
||||
return dp_array
|
||||
@@ -30,9 +31,13 @@ def frogleap(duration, step, dyn_syst, recover_param=False, display=False):
|
||||
iteration : half-step drift -> full-step kick -> half-step drift
|
||||
"""
|
||||
N = np.ceil(duration/step).astype(int)
|
||||
m_array = dyn_syst.get_masses()
|
||||
q_array = dyn_syst.get_positions()
|
||||
p_array = dyn_syst.get_momenta()
|
||||
masses = dyn_syst.get_masses()
|
||||
m_array = np.ones(p_array.shape)
|
||||
for i in range(p_array.shape[0]):
|
||||
m_array[i,:] = masses[i]
|
||||
|
||||
E = np.zeros(N)
|
||||
L = np.zeros((N,3))
|
||||
|
||||
@@ -60,10 +65,13 @@ def frogleap(duration, step, dyn_syst, recover_param=False, display=False):
|
||||
|
||||
if display:
|
||||
# In center of mass frame
|
||||
q_cm = np.sum(m_array.reshape((q_array.shape[0],1))*q_array, axis=0)/m_array.sum()
|
||||
q_cm = np.array([0,0])#np.sum(m_array*q_array, axis=0)/masses.sum()
|
||||
# display progression
|
||||
d.on_running(q_array[:,0]-q_cm[0], q_array[:,1]-q_cm[1])
|
||||
time.sleep(0.01)
|
||||
d.on_running(q_array[:,0]-q_cm[0], q_array[:,1]-q_cm[1], step=j, label="step {0:d}/{1:d}".format(j,N))
|
||||
time.sleep(1e-4)
|
||||
if display:
|
||||
system("convert -delay 5 -loop 0 tmp/????.png tmp/temp.gif && rm tmp/?????.png")
|
||||
system("convert tmp/temp.gif -fuzz 10% -layers Optimize dynsyst.gif && rm tmp/temp.gif")
|
||||
|
||||
if recover_param:
|
||||
return E, L
|
||||
|
||||
@@ -78,6 +78,12 @@ class System:
|
||||
W = W - G*body.m*otherbody.m/rij
|
||||
return T + W
|
||||
|
||||
def __repr__(self): # Called upon "print(system)"
|
||||
return str([print(body) for body in self.bodylist])
|
||||
|
||||
def __str__(self): # Called upon "str(system)"
|
||||
return str([str(body) for body in self.bodylist])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# initialisation mass
|
||||
|
||||
12
lib/plots.py
12
lib/plots.py
@@ -4,6 +4,7 @@
|
||||
Implementation of the plotting and visualization functions.
|
||||
"""
|
||||
import numpy as np
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class DynamicUpdate():
|
||||
@@ -19,21 +20,26 @@ class DynamicUpdate():
|
||||
self.lines, = self.ax.plot([],[],'o')
|
||||
#Autoscale on unknown axis and known lims on the other
|
||||
self.ax.set_autoscaley_on(True)
|
||||
#self.ax.set_xlim(self.min_x, self.max_x)
|
||||
#self.ax.set_ylim(self.min_x, self.max_x)
|
||||
self.ax.set_xlim(self.min_x, self.max_x)
|
||||
self.ax.set_ylim(self.min_x, self.max_x)
|
||||
#Other stuff
|
||||
self.ax.grid()
|
||||
self.ax.set_aspect('equal')
|
||||
|
||||
def on_running(self, xdata, ydata):
|
||||
def on_running(self, xdata, ydata, step=None, label=None):
|
||||
#Update data (with the new _and_ the old points)
|
||||
self.lines.set_xdata(xdata)
|
||||
self.lines.set_ydata(ydata)
|
||||
if not label is None:
|
||||
self.ax.set_title(label)
|
||||
#Need both of these in order to rescale
|
||||
self.ax.relim()
|
||||
self.ax.autoscale_view()
|
||||
#We need to draw *and* flush
|
||||
self.figure.canvas.draw()
|
||||
self.figure.canvas.flush_events()
|
||||
if not step is None and step%10==0:
|
||||
self.figure.savefig("tmp/{0:05d}.png".format(step),bbox_inches="tight")
|
||||
|
||||
#Example
|
||||
def __call__(self):
|
||||
|
||||
17
main.py
17
main.py
@@ -8,34 +8,35 @@ from lib.objects import Body, System
|
||||
|
||||
def main():
|
||||
#initialisation
|
||||
m = np.array([1e5, 1e5, 0.1])
|
||||
m = np.array([1, 1, 1e-5])
|
||||
|
||||
x1 = np.array([-1, 0, 0])
|
||||
x2 = np.array([1, 0, 0])
|
||||
x3 = np.array([100, 0, 0])
|
||||
q = np.array([x1, x2, x3])
|
||||
|
||||
v1 = np.array([0, 0, 0])
|
||||
v2 = np.array([0, 1, 0])
|
||||
v1 = np.array([0, -0.35, 0])
|
||||
v2 = np.array([0, 0.35, 0])
|
||||
v3 = np.array([0, 0, 0])
|
||||
v = np.array([v1, v2, v3])
|
||||
|
||||
bodylist = []
|
||||
for i in range(3):
|
||||
for i in range(2):
|
||||
bodylist.append(Body(m[i], q[i], v[i]))
|
||||
dyn_syst = System(bodylist)
|
||||
dyn_syst.COMShift()
|
||||
|
||||
E, L = frogleap(10, 0.01, dyn_syst, recover_param=True, display=True)
|
||||
duration, step = 100, 0.01
|
||||
E, L = frogleap(duration, step, dyn_syst, recover_param=True, display=True)
|
||||
fig1 = plt.figure()
|
||||
ax1 = fig1.add_subplot(111)
|
||||
ax1.plot(np.arange(E.shape[0]), E, label=r"$E_m$")
|
||||
ax1.plot(np.arange(E.shape[0])/duration, E, label=r"$E_m$")
|
||||
ax1.legend()
|
||||
fig2 = plt.figure()
|
||||
ax2 = fig2.add_subplot(111)
|
||||
ax2.plot(np.arange(L.shape[0]), np.sum(L**2,axis=1), label=r"$L^2$")
|
||||
ax2.plot(np.arange(L.shape[0])/duration, np.sum(L**2,axis=1), label=r"$L^2$")
|
||||
ax2.legend()
|
||||
plt.show()
|
||||
plt.show(block=True)
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
Reference in New Issue
Block a user