Merge remote-tracking branch 'origin/main' into main
# Conflicts: # lib/objects.py # plots/2bodies_leapfrog_dEm.png # plots/2bodies_leapfrog_dL2.png
@@ -8,7 +8,6 @@ import numpy as np
|
||||
from lib.plots import DynamicUpdate
|
||||
from lib.units import *
|
||||
|
||||
|
||||
class Body:
|
||||
|
||||
def __init__(self, mass, position, velocity):
|
||||
@@ -23,19 +22,18 @@ class Body:
|
||||
self.qp = np.zeros(3)
|
||||
self.vp = np.zeros(3)
|
||||
|
||||
def __repr__(self): # Called upon "print(body)"
|
||||
return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m / Ms, self.q, self.v)
|
||||
|
||||
def __str__(self): # Called upon "str(body)"
|
||||
return r"Body of mass: {0:.2f} $M_\odot$".format(self.m / Ms)
|
||||
def __repr__(self): # Called upon "print(body)"
|
||||
return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m/Ms, self.q, self.v)
|
||||
|
||||
def __str__(self): # Called upon "str(body)"
|
||||
return r"Body of mass: {0:.2f} $M_\odot$".format(self.m/Ms)
|
||||
|
||||
class System(Body):
|
||||
|
||||
def __init__(self, bodylist, blackstyle=True):
|
||||
self.blackstyle = blackstyle # for dark mode in plot
|
||||
self.blackstyle = blackstyle #for dark mode in plot
|
||||
self.bodylist = np.array(bodylist)
|
||||
self.time = 0 # lifetime of system
|
||||
self.time = 0 #lifetime of system
|
||||
self.m = self.M
|
||||
self.q = self.COM
|
||||
self.v = self.COMV
|
||||
@@ -47,99 +45,99 @@ class System(Body):
|
||||
return str([str(body) for body in self.bodylist])
|
||||
|
||||
@property
|
||||
def get_masses(self): # return the masses of each object
|
||||
def get_masses(self): #return the masses of each object
|
||||
return np.array([body.m for body in self.bodylist])
|
||||
|
||||
|
||||
@property
|
||||
def get_positions(self): # return the positions of the bodies
|
||||
def get_positions(self): #return the positions of the bodies
|
||||
xdata = np.array([body.q[0] for body in self.bodylist])
|
||||
ydata = np.array([body.q[1] for body in self.bodylist])
|
||||
zdata = np.array([body.q[2] for body in self.bodylist])
|
||||
return xdata, ydata, zdata
|
||||
|
||||
|
||||
@property
|
||||
def get_velocities(self): # return the positions of the bodies
|
||||
def get_velocities(self): #return the positions of the bodies
|
||||
vxdata = np.array([body.v[0] for body in self.bodylist])
|
||||
vydata = np.array([body.v[1] for body in self.bodylist])
|
||||
vzdata = np.array([body.v[2] for body in self.bodylist])
|
||||
return vxdata, vydata, vzdata
|
||||
|
||||
|
||||
@property
|
||||
def get_momenta(self): # return the momenta of the bodies
|
||||
def get_momenta(self): #return the momenta of the bodies
|
||||
pxdata = np.array([body.p[0] for body in self.bodylist])
|
||||
pydata = np.array([body.p[1] for body in self.bodylist])
|
||||
pzdata = np.array([body.p[2] for body in self.bodylist])
|
||||
return pxdata, pydata, pzdata
|
||||
|
||||
@property
|
||||
def M(self): # return total system mass
|
||||
def M(self): #return total system mass
|
||||
mass = 0
|
||||
for body in self.bodylist:
|
||||
mass = mass + body.m
|
||||
return mass
|
||||
|
||||
@property
|
||||
def COM(self): # return center of mass in cartesian np_array
|
||||
def COM(self): #return center of mass in cartesian np_array
|
||||
coord = np.zeros(3)
|
||||
for body in self.bodylist:
|
||||
coord = coord + body.m * body.q
|
||||
coord = coord / self.M
|
||||
coord = coord + body.m*body.q
|
||||
coord = coord/self.M
|
||||
return coord
|
||||
|
||||
@property
|
||||
def COMV(self): # return center of mass velocity in cartesian np_array
|
||||
def COMV(self): #return center of mass velocity in cartesian np_array
|
||||
coord = np.zeros(3)
|
||||
for body in self.bodylist:
|
||||
coord = coord + body.p
|
||||
coord = coord / self.M
|
||||
coord = coord/self.M
|
||||
return coord
|
||||
|
||||
def COMShift(self): # Shift coordinates of bodies in system to COM frame and set COM at rest
|
||||
def COMShift(self): #Shift coordinates of bodies in system to COM frame and set COM at rest
|
||||
for body in self.bodylist:
|
||||
body.q = body.q - self.COM
|
||||
body.p = body.p - self.COMV
|
||||
|
||||
@property
|
||||
def L(self): # return angular momentum of bodies in system
|
||||
def L(self): #return angular momentum of bodies in system
|
||||
L = np.zeros(3)
|
||||
for body in self.bodylist:
|
||||
L = L + np.cross(body.q, body.p)
|
||||
L = L + np.cross(body.q,body.p)
|
||||
return L
|
||||
|
||||
@property
|
||||
def E(self): # return total energy of bodies in system
|
||||
def E(self): #return total energy of bodies in system
|
||||
T = 0
|
||||
W = 0
|
||||
for body in self.bodylist:
|
||||
T = T + 1. / 2. * body.m * np.linalg.norm(body.v) ** 2
|
||||
T = T + 1./2.*body.m*np.linalg.norm(body.v)**2
|
||||
for otherbody in self.bodylist:
|
||||
if body != otherbody:
|
||||
rij = np.linalg.norm(body.q - otherbody.q)
|
||||
W = W - G * body.m * otherbody.m / rij
|
||||
rij = np.linalg.norm(body.q-otherbody.q)
|
||||
W = W - G*body.m*otherbody.m/rij
|
||||
E = T + W
|
||||
return E
|
||||
|
||||
|
||||
@property
|
||||
def mu(self):
|
||||
sum = 0
|
||||
prod = 1
|
||||
for body in self.bodylist:
|
||||
prod = prod * body.m
|
||||
mu = prod / self.M
|
||||
mu = prod/self.M
|
||||
return mu
|
||||
|
||||
@property
|
||||
def ex(self): # exentricity of system (if composed of 2 bodies)
|
||||
if len(self.bodylist) != 2:
|
||||
def ex(self): #exentricity of system (if composed of 2 bodies)
|
||||
if len(self.bodylist) != 2 :
|
||||
return np.nan
|
||||
else:
|
||||
k = (2. * self.E * (np.linalg.norm(self.L) ** 2)) / ((G ** 2) * (self.M ** 2) * (self.mu ** 3)) + 1.
|
||||
k = (2.*self.E*(np.linalg.norm(self.L)**2))/((G**2)*(self.M**2)*(self.mu**3)) + 1.
|
||||
return k
|
||||
|
||||
@property
|
||||
def sma(self): # semi major axis of system (if composed of 2 bodies)
|
||||
if len(self.bodylist) != 2:
|
||||
def sma(self): #semi major axis of system (if composed of 2 bodies)
|
||||
if len(self.bodylist) != 2 :
|
||||
return np.nan
|
||||
else:
|
||||
sma = -G * self.M * self.mu / (2. * self.E)
|
||||
sma = -G*self.M*self.mu/(2.*self.E)
|
||||
return sma
|
||||
|
||||
2
main.py
@@ -27,7 +27,7 @@ def main():
|
||||
v = np.array([v1, v2, v3])
|
||||
|
||||
#integration parameters
|
||||
duration, step = 100*yr, np.array([1./(365.25*2.), 1./365.25])*yr #integration time and step in years
|
||||
duration, step = 100*yr, np.array([1./(365.25*4.), 1./(365.25*2.), 1./365.25])*yr #integration time and step in years
|
||||
integrator = "leapfrog"
|
||||
n_bodies = 2
|
||||
display = False
|
||||
|
||||
|
Before Width: | Height: | Size: 120 KiB After Width: | Height: | Size: 144 KiB |
|
Before Width: | Height: | Size: 78 KiB After Width: | Height: | Size: 133 KiB |
|
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 222 KiB |
|
Before Width: | Height: | Size: 120 KiB After Width: | Height: | Size: 181 KiB |
|
Before Width: | Height: | Size: 180 KiB |
|
Before Width: | Height: | Size: 139 KiB |
|
Before Width: | Height: | Size: 390 KiB |