1
0

start adimension of problem

This commit is contained in:
Thibault Barnouin
2021-11-18 18:53:37 +01:00
parent 981b574faf
commit 53ce8be084
4 changed files with 35 additions and 31 deletions

View File

@@ -23,10 +23,10 @@ class Body:
self.vp = np.zeros(3)
def __repr__(self): # Called upon "print(body)"
return "Body of mass: {0:.2e}kg, position: {1}, velocity: {2}".format(self.m, self.q, self.v)
return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m, self.q, self.v)
def __str__(self): # Called upon "str(body)"
return "Body of mass: {0:.2e}kg".format(self.m)
return r"Body of mass: {0:.2f} $M_\odot$".format(self.m)
class System:
@@ -35,20 +35,30 @@ class System:
self.bodylist = np.array(bodylist)
self.time = 0
@property
def get_masses(self): #return the masses of each object
return np.array([body.m for body in self.bodylist])
@property
def get_positions(self): #return the positions of the bodies
xdata = np.array([body.q[0] for body in self.bodylist])
ydata = np.array([body.q[1] for body in self.bodylist])
zdata = np.array([body.q[2] for body in self.bodylist])
return xdata, ydata, zdata
@property
def get_velocities(self): #return the positions of the bodies
return np.array([body.v for body in self.bodylist])
vxdata = np.array([body.v[0] for body in self.bodylist])
vydata = np.array([body.v[1] for body in self.bodylist])
vzdata = np.array([body.v[2] for body in self.bodylist])
return vxdata, vydata, vzdata
@property
def get_momenta(self): #return the momenta of the bodies
return np.array([body.p for body in self.bodylist])
pxdata = np.array([body.p[0] for body in self.bodylist])
pydata = np.array([body.p[1] for body in self.bodylist])
pzdata = np.array([body.p[2] for body in self.bodylist])
return pxdata, pydata, pzdata
def Mass(self): #return total system mass
mass = 0
@@ -133,7 +143,7 @@ class System:
E[j] = self.Eval()
L[j] = self.Lval()
if display and j%100==0:
if display and j%5==0:
# display progression
if len(self.bodylist) == 1:
d.on_running(self, step=j, label="step {0:d}/{1:d}".format(j,N))

View File

@@ -10,8 +10,8 @@ from lib.units import *
class DynamicUpdate():
#Suppose we know the x range
min_x = -10
max_x = 10
min_x = -1
max_x = 1
plt.ion()
@@ -64,11 +64,17 @@ class DynamicUpdate():
self.ax.grid()
if self.blackstyle:
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
self.ax.set_xlabel('AU', color='w')
self.ax.set_ylabel('AU', color='w')
self.ax.set_zlabel('AU', color='w')
else:
self.ax.legend()
self.ax.set_xlabel('AU')
self.ax.set_ylabel('AU')
self.ax.set_zlabel('AU')
def on_running(self, dyn_syst, step=None, label=None):
xdata, ydata, zdata = dyn_syst.get_positions()
xdata, ydata, zdata = dyn_syst.get_positions
values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1))
self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x])
self.set_lims()
@@ -88,25 +94,12 @@ class DynamicUpdate():
#We need to draw *and* flush
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if not step is None and step%1000==0:
if not step is None and step%10==0:
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
def close(self):
plt.close()
#Example
def __call__(self):
import numpy as np
import time
self.on_launch()
xdata = []
ydata = []
for x in np.arange(0,10,0.5):
xdata.append(x)
ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2))
self.on_running(xdata, ydata)
time.sleep(1)
return xdata, ydata
def display_parameters(E,L,parameters,savename=""):
"""
@@ -116,17 +109,18 @@ def display_parameters(E,L,parameters,savename=""):
duration, step, dyn_syst, integrator = parameters
if type(step) != list:
step = [step]
if (len(E) == duration//step[0]) and (len(L) == duration//step[0]):
print(E.shape, L.shape)
if (len(E.shape) == 1) and (len(L.shape) == 2):
E, L = [E], [L]
bodies = ""
for body in dyn_syst.bodylist:
bodies += str(body)+" ; "
title = "Relative difference of the {0:s} "+"for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration/yr)
title = "Relative difference of the {0:s} "+"for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration)
fig1 = plt.figure(figsize=(15,7))
ax1 = fig1.add_subplot(111)
for i in range(len(E)):
ax1.plot(np.arange(E[i].shape[0])*step[i]/yr, np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]/yr))
ax1.plot(np.arange(E[i].shape[0])*step[i], np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]))
ax1.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
ax1.legend()
fig1.suptitle(title.format("mechanical energy"))
@@ -137,7 +131,7 @@ def display_parameters(E,L,parameters,savename=""):
for i in range(len(L)):
dL = ((L[i]-L[i][0])/L[i][0])
dL[np.isnan(dL)] = 0.
ax2.plot(np.arange(L[i].shape[0])*step[i]/yr, np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i]/yr))
ax2.plot(np.arange(L[i].shape[0])*step[i], np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i]))
ax2.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
ax2.legend()
fig2.suptitle(title.format("kinetic moment"))

View File

@@ -4,7 +4,7 @@
Units used in the project.
"""
globals()['G'] = 6.67e-11 #Gravitational constant in SI units
globals()['Ms'] = 2e30 #Solar mass in kg
globals()['au'] = 1.5e11 #Astronomical unit in m
globals()['yr'] = 3.15576e7 #year in seconds
globals()['yr'] = 3.15576e7 #year in seconds
globals()['G'] = 6.67e-11*yr**2 #Gravitational constant in SI units

View File

@@ -9,8 +9,8 @@ from lib.units import *
def main():
#initialisation
m = np.array([1., 1., 1e-5])*Ms # Masses in Solar mass
a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units
m = np.array([1., 1., 1e-5])*Ms/Ms # Masses in Solar mass
a = np.array([1., 1., 5.])*au/au # Semi-major axis in astronomical units
e = np.array([0., 0., 1./4.]) # Eccentricity
psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees
@@ -25,7 +25,7 @@ def main():
v = np.array([v1, v2, v3])
#integration parameters
duration, step = 100*yr, [1e4, 1e5]
duration, step = 100*yr/yr, np.array([1./(365.25*2.), 1./365.25])*yr/yr #integration time and step in years
integrator = "leapfrog"
n_bodies = 2
display = False