diff --git a/lib/objects.py b/lib/objects.py index d981950..deb672f 100755 --- a/lib/objects.py +++ b/lib/objects.py @@ -23,10 +23,10 @@ class Body: self.vp = np.zeros(3) def __repr__(self): # Called upon "print(body)" - return "Body of mass: {0:.2e}kg, position: {1}, velocity: {2}".format(self.m, self.q, self.v) + return r"Body of mass: {0:.2f} $M_\odot$, position: {1}, velocity: {2}".format(self.m, self.q, self.v) def __str__(self): # Called upon "str(body)" - return "Body of mass: {0:.2e}kg".format(self.m) + return r"Body of mass: {0:.2f} $M_\odot$".format(self.m) class System: @@ -35,20 +35,30 @@ class System: self.bodylist = np.array(bodylist) self.time = 0 + @property def get_masses(self): #return the masses of each object return np.array([body.m for body in self.bodylist]) + @property def get_positions(self): #return the positions of the bodies xdata = np.array([body.q[0] for body in self.bodylist]) ydata = np.array([body.q[1] for body in self.bodylist]) zdata = np.array([body.q[2] for body in self.bodylist]) return xdata, ydata, zdata + @property def get_velocities(self): #return the positions of the bodies - return np.array([body.v for body in self.bodylist]) + vxdata = np.array([body.v[0] for body in self.bodylist]) + vydata = np.array([body.v[1] for body in self.bodylist]) + vzdata = np.array([body.v[2] for body in self.bodylist]) + return vxdata, vydata, vzdata + @property def get_momenta(self): #return the momenta of the bodies - return np.array([body.p for body in self.bodylist]) + pxdata = np.array([body.p[0] for body in self.bodylist]) + pydata = np.array([body.p[1] for body in self.bodylist]) + pzdata = np.array([body.p[2] for body in self.bodylist]) + return pxdata, pydata, pzdata def Mass(self): #return total system mass mass = 0 @@ -133,7 +143,7 @@ class System: E[j] = self.Eval() L[j] = self.Lval() - if display and j%100==0: + if display and j%5==0: # display progression if len(self.bodylist) == 1: d.on_running(self, step=j, label="step {0:d}/{1:d}".format(j,N)) diff --git a/lib/plots.py b/lib/plots.py index ceb2968..12054fb 100755 --- a/lib/plots.py +++ b/lib/plots.py @@ -10,8 +10,8 @@ from lib.units import * class DynamicUpdate(): #Suppose we know the x range - min_x = -10 - max_x = 10 + min_x = -1 + max_x = 1 plt.ion() @@ -64,11 +64,17 @@ class DynamicUpdate(): self.ax.grid() if self.blackstyle: self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2) + self.ax.set_xlabel('AU', color='w') + self.ax.set_ylabel('AU', color='w') + self.ax.set_zlabel('AU', color='w') else: self.ax.legend() + self.ax.set_xlabel('AU') + self.ax.set_ylabel('AU') + self.ax.set_zlabel('AU') def on_running(self, dyn_syst, step=None, label=None): - xdata, ydata, zdata = dyn_syst.get_positions() + xdata, ydata, zdata = dyn_syst.get_positions values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1)) self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x]) self.set_lims() @@ -88,25 +94,12 @@ class DynamicUpdate(): #We need to draw *and* flush self.fig.canvas.draw() self.fig.canvas.flush_events() - if not step is None and step%1000==0: + if not step is None and step%10==0: self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight") def close(self): plt.close() - #Example - def __call__(self): - import numpy as np - import time - self.on_launch() - xdata = [] - ydata = [] - for x in np.arange(0,10,0.5): - xdata.append(x) - ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2)) - self.on_running(xdata, ydata) - time.sleep(1) - return xdata, ydata def display_parameters(E,L,parameters,savename=""): """ @@ -116,17 +109,18 @@ def display_parameters(E,L,parameters,savename=""): duration, step, dyn_syst, integrator = parameters if type(step) != list: step = [step] - if (len(E) == duration//step[0]) and (len(L) == duration//step[0]): + print(E.shape, L.shape) + if (len(E.shape) == 1) and (len(L.shape) == 2): E, L = [E], [L] bodies = "" for body in dyn_syst.bodylist: bodies += str(body)+" ; " - title = "Relative difference of the {0:s} "+"for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration/yr) + title = "Relative difference of the {0:s} "+"for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration) fig1 = plt.figure(figsize=(15,7)) ax1 = fig1.add_subplot(111) for i in range(len(E)): - ax1.plot(np.arange(E[i].shape[0])*step[i]/yr, np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]/yr)) + ax1.plot(np.arange(E[i].shape[0])*step[i], np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i])) ax1.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log') ax1.legend() fig1.suptitle(title.format("mechanical energy")) @@ -137,7 +131,7 @@ def display_parameters(E,L,parameters,savename=""): for i in range(len(L)): dL = ((L[i]-L[i][0])/L[i][0]) dL[np.isnan(dL)] = 0. - ax2.plot(np.arange(L[i].shape[0])*step[i]/yr, np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i]/yr)) + ax2.plot(np.arange(L[i].shape[0])*step[i], np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i])) ax2.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log') ax2.legend() fig2.suptitle(title.format("kinetic moment")) diff --git a/lib/units.py b/lib/units.py index e23b866..8197256 100644 --- a/lib/units.py +++ b/lib/units.py @@ -4,7 +4,7 @@ Units used in the project. """ -globals()['G'] = 6.67e-11 #Gravitational constant in SI units globals()['Ms'] = 2e30 #Solar mass in kg globals()['au'] = 1.5e11 #Astronomical unit in m -globals()['yr'] = 3.15576e7 #year in seconds \ No newline at end of file +globals()['yr'] = 3.15576e7 #year in seconds +globals()['G'] = 6.67e-11*yr**2 #Gravitational constant in SI units \ No newline at end of file diff --git a/main.py b/main.py index 3c145f8..7b95918 100755 --- a/main.py +++ b/main.py @@ -9,8 +9,8 @@ from lib.units import * def main(): #initialisation - m = np.array([1., 1., 1e-5])*Ms # Masses in Solar mass - a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units + m = np.array([1., 1., 1e-5])*Ms/Ms # Masses in Solar mass + a = np.array([1., 1., 5.])*au/au # Semi-major axis in astronomical units e = np.array([0., 0., 1./4.]) # Eccentricity psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees @@ -25,7 +25,7 @@ def main(): v = np.array([v1, v2, v3]) #integration parameters - duration, step = 100*yr, [1e4, 1e5] + duration, step = 100*yr/yr, np.array([1./(365.25*2.), 1./365.25])*yr/yr #integration time and step in years integrator = "leapfrog" n_bodies = 2 display = False