Update display with readable data
@@ -1,15 +1,12 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
Class definition for physical atribute
|
||||
Class definition for physical attribute
|
||||
"""
|
||||
from os import system
|
||||
import numpy as np
|
||||
from lib.plots import DynamicUpdate
|
||||
|
||||
globals()['G'] = 6.67e-11 #Gravitational constant in SI units
|
||||
globals()['Ms'] = 2e30 #Solar mass in kg
|
||||
globals()['au'] = 1.5e11 #Astronomical unit in m
|
||||
from lib.units import *
|
||||
|
||||
class Body:
|
||||
|
||||
@@ -33,7 +30,8 @@ class Body:
|
||||
|
||||
class System:
|
||||
|
||||
def __init__(self, bodylist):
|
||||
def __init__(self, bodylist, blackstyle=True):
|
||||
self.blackstyle = blackstyle
|
||||
self.bodylist = np.array(bodylist)
|
||||
self.time = 0
|
||||
|
||||
@@ -41,7 +39,10 @@ class System:
|
||||
return np.array([body.m for body in self.bodylist])
|
||||
|
||||
def get_positions(self): #return the positions of the bodies
|
||||
return np.array([body.q for body in self.bodylist])
|
||||
xdata = np.array([body.q[0] for body in self.bodylist])
|
||||
ydata = np.array([body.q[1] for body in self.bodylist])
|
||||
zdata = np.array([body.q[2] for body in self.bodylist])
|
||||
return xdata, ydata, zdata
|
||||
|
||||
def get_velocities(self): #return the positions of the bodies
|
||||
return np.array([body.v for body in self.bodylist])
|
||||
@@ -121,7 +122,7 @@ class System:
|
||||
except IOError:
|
||||
system("rm tmp/*")
|
||||
d = DynamicUpdate(self)
|
||||
d.on_launch()
|
||||
d.launch(self.blackstyle)
|
||||
|
||||
N = np.ceil(duration/dt).astype(int)
|
||||
E = np.zeros(N)
|
||||
@@ -139,6 +140,7 @@ class System:
|
||||
else:
|
||||
d.on_running(self, step=j, label="step {0:d}/{1:d}".format(j,N))
|
||||
if display:
|
||||
d.close()
|
||||
system("convert -delay 5 -loop 0 tmp/??????.png tmp/temp.gif && rm tmp/??????.png")
|
||||
system("convert tmp/temp.gif -fuzz 10% -layers Optimize plots/dynsyst.gif")# && rm tmp/temp.gif")
|
||||
|
||||
@@ -216,7 +218,7 @@ class System:
|
||||
except IOError:
|
||||
system("rm tmp/*")
|
||||
d = DynamicUpdate(self)
|
||||
d.on_launch()
|
||||
d.launch(self.blackstyle)
|
||||
|
||||
N = np.ceil(duration/dt).astype(int)
|
||||
E = np.zeros(N)
|
||||
@@ -234,6 +236,7 @@ class System:
|
||||
else:
|
||||
d.on_running(self, step=j, label="step {0:d}/{1:d}".format(j,N))
|
||||
if display:
|
||||
d.close()
|
||||
system("convert -delay 5 -loop 0 tmp/??????.png tmp/temp.gif && rm tmp/??????.png")
|
||||
system("convert tmp/temp.gif -fuzz 10% -layers Optimize plots/dynsyst.gif")# && rm tmp/temp.gif")
|
||||
|
||||
|
||||
61
lib/plots.py
@@ -6,6 +6,7 @@ Implementation of the plotting and visualization functions.
|
||||
import numpy as np
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from lib.units import *
|
||||
|
||||
class DynamicUpdate():
|
||||
#Suppose we know the x range
|
||||
@@ -21,9 +22,8 @@ class DynamicUpdate():
|
||||
self.ax.set_xlim(factor*self.min_x, factor*self.max_x)
|
||||
self.ax.set_ylim(factor*self.min_x, factor*self.max_x)
|
||||
self.ax.set_zlim(factor*self.min_x, factor*self.max_x)
|
||||
|
||||
def on_launch(self):
|
||||
#Set up plot
|
||||
|
||||
def set_blackstyle(self):
|
||||
self.fig = plt.figure(figsize=(10,10), facecolor='k')
|
||||
self.ax = self.fig.add_subplot(projection='3d')
|
||||
self.ax.set_facecolor('k')
|
||||
@@ -39,6 +39,18 @@ class DynamicUpdate():
|
||||
self.ax.w_xaxis.set_pane_color((0,0,0,0))
|
||||
self.ax.w_yaxis.set_pane_color((0,0,0,0))
|
||||
self.ax.w_zaxis.set_pane_color((0,0,0,0))
|
||||
|
||||
|
||||
def launch(self, blackstyle=True):
|
||||
#Set up plot
|
||||
if blackstyle:
|
||||
self.blackstyle = True
|
||||
self.set_blackstyle()
|
||||
else:
|
||||
self.blackstyle = False
|
||||
self.fig = plt.figure(figsize=(10,10))
|
||||
self.ax = self.fig.add_subplot(projection='3d')
|
||||
|
||||
self.lines = []
|
||||
for i,body in enumerate(self.dyn_syst.bodylist):
|
||||
x, y, z = body.q
|
||||
@@ -50,7 +62,10 @@ class DynamicUpdate():
|
||||
self.set_lims()
|
||||
#Other stuff
|
||||
self.ax.grid()
|
||||
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
|
||||
if self.blackstyle:
|
||||
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
|
||||
else:
|
||||
self.ax.legend()
|
||||
|
||||
def on_running(self, dyn_syst, step=None, label=None):
|
||||
xdata, ydata, zdata = dyn_syst.get_positions()
|
||||
@@ -62,7 +77,11 @@ class DynamicUpdate():
|
||||
x, y, z = body.q
|
||||
self.lines[i].set_data_3d([x], [y], [z])
|
||||
if not label is None:
|
||||
self.ax.set_title(label,color='w')
|
||||
if self.blackstyle:
|
||||
self.ax.set_title(label,color='w')
|
||||
else:
|
||||
self.ax.set_title(label)
|
||||
|
||||
#Need both of these in order to rescale
|
||||
self.ax.relim()
|
||||
self.ax.autoscale_view()
|
||||
@@ -71,6 +90,9 @@ class DynamicUpdate():
|
||||
self.fig.canvas.flush_events()
|
||||
if not step is None and step%1000==0:
|
||||
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
|
||||
|
||||
def close(self):
|
||||
self.fig.close()
|
||||
|
||||
#Example
|
||||
def __call__(self):
|
||||
@@ -85,3 +107,32 @@ class DynamicUpdate():
|
||||
self.on_running(xdata, ydata)
|
||||
time.sleep(1)
|
||||
return xdata, ydata
|
||||
|
||||
def display_parameters(E,L,parameters,savename=""):
|
||||
"""
|
||||
"""
|
||||
if savename != "":
|
||||
savename += "_"
|
||||
duration, step, dyn_syst, integrator = parameters
|
||||
bodies = ""
|
||||
for body in dyn_syst.bodylist:
|
||||
bodies += str(body)+" ; "
|
||||
title = "Relative difference of the {} "+"for a system composed of {0:s} \nintegrated with {1:s} for a duration of {2:.2f} years with a step of {3:.2e} years.".format(bodies, integrator, duration/yr, step/yr)
|
||||
fig1 = plt.figure(figsize=(15,7))
|
||||
ax1 = fig1.add_subplot(111)
|
||||
ax1.plot(np.arange(E.shape[0])*step/yr, np.abs((E-E[0])/E[0]), label=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$")
|
||||
ax1.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
|
||||
ax1.legend()
|
||||
fig1.suptitle(title.format("mechanical energy"))
|
||||
fig1.savefig("plots/{0:s}dEm.png".format(savename),bbox_inches="tight")
|
||||
fig2 = plt.figure(figsize=(15,7))
|
||||
ax2 = fig2.add_subplot(111)
|
||||
dL = ((L-L[0])/L[0])
|
||||
dL[np.isnan(dL)] = 0.
|
||||
ax2.plot(np.arange(L.shape[0])*step/yr, np.abs(np.sum(dL,axis=1)), label=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$")
|
||||
ax2.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
|
||||
ax2.legend()
|
||||
fig2.suptitle(title.format("kinetic moment"))
|
||||
fig2.savefig("plots/{0:s}dL2.png".format(savename),bbox_inches="tight")
|
||||
plt.show(block=True)
|
||||
|
||||
10
lib/units.py
Normal file
@@ -0,0 +1,10 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding:utf-8 -*-
|
||||
"""
|
||||
Units used in the project.
|
||||
"""
|
||||
|
||||
globals()['G'] = 6.67e-11 #Gravitational constant in SI units
|
||||
globals()['Ms'] = 2e30 #Solar mass in kg
|
||||
globals()['au'] = 1.5e11 #Astronomical unit in m
|
||||
globals()['yr'] = 3.15576e7 #year in seconds
|
||||
38
main.py
@@ -4,50 +4,38 @@ from sys import exit as sysexit
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from lib.objects import Body, System
|
||||
|
||||
globals()['G'] = 6.67e-11 #Gravitational constant in SI units
|
||||
globals()['Ms'] = 2e30 #Solar mass in kg
|
||||
globals()['au'] = 1.5e11 #Astronomical unit in m
|
||||
from lib.plots import display_parameters
|
||||
from lib.units import *
|
||||
|
||||
def main():
|
||||
#initialisation
|
||||
m = np.array([1, 1, 0.1])*Ms # Masses in Solar mass
|
||||
m = np.array([1., 1., 0.])*Ms # Masses in Solar mass
|
||||
a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units
|
||||
e = np.array([0., 0., 1./4.]) # Eccentricity
|
||||
psi = np.array([0., 0., 80.])*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees
|
||||
|
||||
x1 = np.array([0., -1., 0.])*a[0]
|
||||
x2 = np.array([0., 1., 0.])*a[1]
|
||||
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2]
|
||||
q = np.array([x1, x2, x3])
|
||||
|
||||
v1 = np.array([-np.sqrt(G*m[1]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v2 = np.array([np.sqrt(G*m[0]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v1 = np.array([np.sqrt(G*m[1]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v2 = np.array([-np.sqrt(G*m[0]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
|
||||
v3 = np.array([0., np.sqrt(G*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.])
|
||||
v = np.array([v1, v2, v3])
|
||||
|
||||
bodylist = []
|
||||
for i in range(3):
|
||||
for i in range(2):
|
||||
bodylist.append(Body(m[i], q[i], v[i]))
|
||||
dyn_syst = System(bodylist)
|
||||
dyn_syst.COMShift()
|
||||
|
||||
duration, step = 100*3e7, 1e4
|
||||
#E, L = dyn_syst.leapfrog(duration, step, recover_param=True, display=True)
|
||||
E, L = dyn_syst.hermite(duration,step, recover_param=True, display=True)
|
||||
plt.close()
|
||||
fig1 = plt.figure(figsize=(30,15))
|
||||
ax1 = fig1.add_subplot(111)
|
||||
ax1.plot(np.arange(E.shape[0])/duration, E, label=r"$E_m$")
|
||||
ax1.legend()
|
||||
fig1.savefig("plots/Em.png",bbox_inches="tight")
|
||||
fig2 = plt.figure(figsize=(30,15))
|
||||
ax2 = fig2.add_subplot(111)
|
||||
ax2.plot(np.arange(L.shape[0])/duration, np.sum(L**2,axis=1), label=r"$L^2$")
|
||||
ax2.legend()
|
||||
fig2.savefig("plots/L2.png",bbox_inches="tight")
|
||||
plt.show(block=True)
|
||||
|
||||
duration, step = 100*yr, 1e4
|
||||
#E, L = dyn_syst.leapfrog(duration, step, recover_param=True)#, display=True)
|
||||
E, L = dyn_syst.hermite(duration,step, recover_param=True)#, display=True)
|
||||
parameters = [duration, step, dyn_syst, "hermite"]
|
||||
display_parameters(E, L, parameters=parameters, savename="2bodies_hermite")
|
||||
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
Before Width: | Height: | Size: 305 KiB |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 265 KiB |
BIN
plots/2bodies_hermite_dEm.png
Normal file
|
After Width: | Height: | Size: 86 KiB |
BIN
plots/2bodies_hermite_dL2.png
Normal file
|
After Width: | Height: | Size: 48 KiB |
BIN
plots/2bodies_hermite_dynsyst.gif
Normal file
|
After Width: | Height: | Size: 377 KiB |
BIN
plots/2bodies_leapfrog_dEm.png
Normal file
|
After Width: | Height: | Size: 73 KiB |
BIN
plots/2bodies_leapfrog_dL2.png
Normal file
|
After Width: | Height: | Size: 47 KiB |
BIN
plots/2bodies_leapfrog_dynsyst.gif
Normal file
|
After Width: | Height: | Size: 356 KiB |
|
Before Width: | Height: | Size: 298 KiB |
|
Before Width: | Height: | Size: 310 KiB |
BIN
plots/3bodies_hermite_dEm.png
Normal file
|
After Width: | Height: | Size: 319 KiB |
BIN
plots/3bodies_hermite_dL2.png
Normal file
|
After Width: | Height: | Size: 320 KiB |
|
Before Width: | Height: | Size: 784 KiB After Width: | Height: | Size: 444 KiB |
BIN
plots/Em.png
|
Before Width: | Height: | Size: 323 KiB |
BIN
plots/L2.png
|
Before Width: | Height: | Size: 323 KiB |
|
Before Width: | Height: | Size: 444 KiB |