Files
FOC_Reduction/package/FOC_reduction.py
sugar_jo 8e5f439259 add subtract_bkg funcition
Allow subtracting the bkg simpler
2024-07-14 15:46:22 +08:00

276 lines
17 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
"""
Main script where are progressively added the steps for the FOC pipeline reduction.
"""
# Project libraries
import numpy as np
from copy import deepcopy
from os import system
from os.path import exists as path_exists
import lib.fits as proj_fits # Functions to handle fits files
import lib.reduction as proj_red # Functions used in reduction pipeline
import lib.plots as proj_plots # Functions for plotting data
from lib.utils import sci_not, princ_angle
from matplotlib.colors import LogNorm
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False):
# Reduction parameters
# Deconvolution
deconvolve = False
if deconvolve:
# from lib.deconvolve import from_file_psf
psf = 'gaussian' # Can be user-defined as well
# psf = from_file_psf(data_folder+psf_file)
psf_FWHM = 3.1
psf_scale = 'px'
psf_shape = None # (151, 151)
iterations = 1
algo = "conjgrad"
# Initial crop
display_crop = False
# Background estimation
error_sub_type = 'freedman-diaconis' # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
subtract_error = 0.01
display_bkg = True
# Data binning
rebin = True
pxsize = 2
px_scale = 'px' # pixel, arcsec or full
rebin_operation = 'sum' # sum or average
# Alignement
align_center = 'center' # If None will not align the images
display_align = True
display_data = False
# Transmittance correction
transmitcorr = True
# Smoothing
smoothing_function = 'combine' # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = None # If None, no smoothing is done
smoothing_scale = 'px' # pixel or arcsec
# Rotation
rotate_data = False # rotation to North convention can give erroneous results
rotate_stokes = True
# Polarization map output
SNRp_cut = 3. # P measurments with SNR>3
SNRi_cut = 3. # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
vec_scale = 5
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
# Adaptive binning
# in order to perfrom optimal binning, there are several steps to follow:
# 1. Load the data again and preserve the full images
# 2. Skip the cropping step but use the same error and background estimation
# 3. Use the same alignment as the routine
# 4. Skip the rebinning step
# 5. Calulate the Stokes parameters without smoothing
#
optimal_binning = False
optimize = False
options = {'optimize': optimize, 'optimal_binning': optimal_binning}
# Pipeline start
# Step 1:
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
if infiles is not None:
prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str)
obs_dir = "/".join(infiles[0].split("/")[:-1])
if not path_exists(obs_dir):
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
if target is None:
target = input("Target name:\n>")
else:
from lib.query import retrieve_products
target, products = retrieve_products(target, proposal_id, output_dir=output_dir)
prod = products.pop()
for prods in products:
main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir, crop=crop, interactive=interactive)
data_folder = prod[0][0]
try:
plots_folder = data_folder.replace("data", "plots")
except ValueError:
plots_folder = "."
if not path_exists(plots_folder):
system("mkdir -p {0:s} ".format(plots_folder))
infiles = [p[1] for p in prod]
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
if optimal_binning:
_data_array, _headers = deepcopy(data_array), deepcopy(headers)
figname = "_".join([target, "FOC"])
figtype = ""
if rebin:
if px_scale not in ['full']:
figtype = "".join(["b", "{0:.2f}".format(pxsize), px_scale]) # additionnal informations
else:
figtype = "full"
if smoothing_FWHM is not None:
figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]),
"{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations
if deconvolve:
figtype += "_deconv"
if align_center is None:
figtype += "_not_aligned"
# Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0.,
inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
data_mask = np.ones(data_array[0].shape, dtype=bool)
if optimal_binning:
_data_mask = np.ones(_data_array[0].shape, dtype=bool)
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve:
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
# Estimate error from data background, estimated from sub-image of desired sub_shape.
background = None
data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, data_mask=data_mask, sub_type=error_sub_type, subtract_error=subtract_error, display=display_bkg, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=True)
# if optimal_binning:
# _data_array, _error_array, _background = proj_red.subtract_bkg(_data_array, error_array, background) # _background is the same as background, but for the optimal binning to clarify
# Align and rescale images with oversampling.
data_array, error_array, headers, data_mask, shifts, error_shifts = proj_red.align_data(
data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True)
# if optimal_binning:
# _data_array, _error_array, _headers, _data_mask, _shifts, _error_shifts = proj_red.align_data(
# _data_array, _headers, error_array=_error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=True)
if display_align:
print("Image shifts: {} \nShifts uncertainty: {}".format(shifts, error_shifts))
proj_plots.plot_obs(data_array, headers, savename="_".join([figname, str(align_center)]), plots_folder=plots_folder, norm=LogNorm(
vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam']))
# Rebin data to desired pixel size.
if rebin:
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
# Rotate data to have North up
if rotate_data:
data_mask = np.ones(data_array.shape[1:]).astype(bool)
alpha = headers[0]['orientat']
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -alpha)
# Plot array for checking output
if display_data and px_scale.lower() not in ['full', 'integrate']:
proj_plots.plot_obs(data_array, headers, savename="_".join([figname, "rebin"]), plots_folder=plots_folder, norm=LogNorm(
vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam']))
background = np.array([np.array(bkg).reshape(1, 1) for bkg in background])
background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1'] == head['filtnam1'] for h in headers], dtype=bool)].mean())
** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)])
# Step 2:
# Compute Stokes I, Q, U with smoothed polarized images
# SMOOTHING DISCUSSION :
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(
1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
# if optimal_binning:
# _I_stokes, _Q_stokes, _U_stokes, _Stokes_cov = proj_red.compute_Stokes(
# _data_array, _error_array, _data_mask, _headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr)
# _I_bkg, _Q_bkg, _U_bkg, _S_cov_bkg = proj_red.compute_Stokes(_background, background_error, np.array(True).reshape(
# 1, 1), _headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False)
# Step 3:
# Rotate images to have North up
if rotate_stokes:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None)
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None)
# Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers)
# Step 4:
# Save image to FITS.
figname = "_".join([figname, figtype]) if figtype != "" else figname
Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P,
headers, data_mask, figname, data_folder=data_folder, return_hdul=True)
# Step 5:
# crop to desired region of interest (roi)
if crop:
figname += "_crop"
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test), norm=LogNorm())
stokescrop.crop()
stokescrop.write_to("/".join([data_folder, figname+".fits"]))
Stokes_test, headers = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
data_mask = Stokes_test['data_mask'].data.astype(bool)
print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *sci_not(
Stokes_test[0].data[data_mask].sum()*headers[0]['photflam'], np.sqrt(Stokes_test[3].data[0, 0][data_mask].sum())*headers[0]['photflam'], 2, out=int)))
print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]['p_int']*100., np.ceil(headers[0]['p_int_err']*1000.)/10.))
print("PA_int = {0:.1f} ± {1:.1f} °".format(princ_angle(headers[0]['pa_int']), princ_angle(np.ceil(headers[0]['pa_int_err']*10.)/10.)))
# Background values
print("F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *sci_not(
I_bkg[0, 0]*headers[0]['photflam'], np.sqrt(S_cov_bkg[0, 0][0, 0])*headers[0]['photflam'], 2, out=int)))
print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0]*100., np.ceil(s_P_bkg[0, 0]*1000.)/10.))
print("PA_bkg = {0:.1f} ± {1:.1f} °".format(princ_angle(PA_bkg[0, 0]), princ_angle(np.ceil(s_PA_bkg[0, 0]*10.)/10.)))
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
if px_scale.lower() not in ['full', 'integrate'] and not interactive:
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim,
step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname]), plots_folder=plots_folder, **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "I"]), plots_folder=plots_folder, display='Intensity', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "P"]), plots_folder=plots_folder, display='Pol_deg', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "PA"]), plots_folder=plots_folder, display='Pol_ang', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "I_err"]), plots_folder=plots_folder, display='I_err', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "SNRi"]), plots_folder=plots_folder, display='SNRi', **options)
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec,
vec_scale=vec_scale, savename="_".join([figname, "SNRp"]), plots_folder=plots_folder, display='SNRp', **options)
elif not interactive:
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut,
savename=figname, plots_folder=plots_folder, display='integrate', **options)
elif px_scale.lower() not in ['full', 'integrate']:
proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
return 0
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Query MAST for target products')
parser.add_argument('-t', '--target', metavar='targetname', required=False, help='the name of the target', type=str, default=None)
parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False, help='the proposal id of the data products', type=int, default=None)
parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*', help='the full or relative path to the data products', default=None)
parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False,
help='output directory path for the data products', type=str, default="./data")
parser.add_argument('-c', '--crop', action='store_true', required=False, help='whether to crop the analysis region')
parser.add_argument('-i', '--interactive', action='store_true', required=False, help='whether to output to the interactive analysis tool')
args = parser.parse_args()
exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files,
output_dir=args.output_dir, crop=args.crop, interactive=args.interactive)
print("Finished with ExitCode: ", exitcode)