Files
FOC_Reduction/package/lib/query.py
2024-11-19 13:50:23 +01:00

193 lines
8.4 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
"""
Library function to query and download datatsets from MAST api.
"""
from os import system
from os.path import exists as path_exists
from os.path import join as path_join
from warnings import filterwarnings
import astropy.units as u
import numpy as np
from astropy.table import Column, unique
from astropy.time import Time, TimeDelta
from astroquery.exceptions import NoResultsWarning
from astroquery.mast import MastMissions, Observations
filterwarnings("error", category=NoResultsWarning)
def divide_proposal(products):
"""
Divide observation in proposals by time or filter
"""
for pid in np.unique(products["Proposal ID"]):
obs = products[products["Proposal ID"] == pid].copy()
same_filt = np.unique(np.array(np.sum([obs["Filters"][:, 1:] == filt[1:] for filt in obs["Filters"]], axis=2) < 3, dtype=bool), axis=0)
if len(same_filt) > 1:
for filt in same_filt:
products["Proposal ID"][np.any([products["Dataset"] == dataset for dataset in obs["Dataset"][filt]], axis=0)] = "_".join(
[obs["Proposal ID"][filt][0], "_".join([fi for fi in obs["Filters"][filt][0][1:] if fi[:-1] != "CLEAR"])]
)
for pid in np.unique(products["Proposal ID"]):
obs = products[products["Proposal ID"] == pid].copy()
close_date = np.unique(
[[np.abs(TimeDelta(obs["Start"][i].unix - date.unix, format="sec")) < 7.0 * u.d for i in range(len(obs))] for date in obs["Start"]], axis=0
)
if len(close_date) > 1:
for date in close_date:
products["Proposal ID"][np.any([products["Dataset"] == dataset for dataset in obs["Dataset"][date]], axis=0)] = "_".join(
[obs["Proposal ID"][date][0], str(obs["Start"][date][0])[:10]]
)
return products
def get_product_list(target=None, proposal_id=None):
"""
Retrieve products list for a given target from the MAST archive
"""
mission = MastMissions(mission="hst")
radius = "3"
select_cols = [
"sci_data_set_name",
"sci_spec_1234",
"sci_actual_duration",
"sci_start_time",
"sci_stop_time",
"sci_central_wavelength",
"sci_instrume",
"sci_aper_1234",
"sci_targname",
"sci_pep_id",
"sci_pi_last_name",
]
cols = ["Dataset", "Filters", "Exptime", "Start", "Stop", "Central wavelength", "Instrument", "Size", "Target name", "Proposal ID", "PI last name"]
if target is None:
target = input("Target name:\n>")
# Use query_object method to resolve the object name into coordinates
results = mission.query_object(target, radius=radius, select_cols=select_cols, sci_spec_1234="POL*", sci_obs_type="image", sci_aec="S", sci_instrume="foc")
for c, n_c in zip(select_cols, cols):
results.rename_column(c, n_c)
results["Proposal ID"] = Column(results["Proposal ID"], dtype="U35")
results["Filters"] = Column(np.array([filt.split(";") for filt in results["Filters"]], dtype=str))
results["Start"] = Column(Time(results["Start"]))
results["Stop"] = Column(Time(results["Stop"]))
results = divide_proposal(results)
obs = results.copy()
# Remove single observations for which a FIND filter is used
to_remove = []
for i in range(len(obs)):
if "F1ND" in obs[i]["Filters"]:
to_remove.append(i)
obs.remove_rows(to_remove)
# Remove observations for which a polarization filter is missing
polfilt = {"POL0": 0, "POL60": 1, "POL120": 2}
for pid in np.unique(obs["Proposal ID"]):
used_pol = np.zeros(3)
for dataset in obs[obs["Proposal ID"] == pid]:
used_pol[polfilt[dataset["Filters"][0]]] += 1
if np.any(used_pol < 1):
obs.remove_rows(np.arange(len(obs))[obs["Proposal ID"] == pid])
tab = unique(obs, ["Target name", "Proposal ID"])
obs["Obs"] = [np.argmax(np.logical_and(tab["Proposal ID"] == data["Proposal ID"], tab["Target name"] == data["Target name"])) + 1 for data in obs]
try:
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument", "Size", "Target name", "Proposal ID", "PI last name"]], "Obs")
except IndexError:
raise ValueError("There is no observation with POL0, POL60 and POL120 for {0:s} in HST/FOC Legacy Archive".format(target))
b = np.zeros(len(results), dtype=bool)
if proposal_id is not None and str(proposal_id) in obs["Proposal ID"]:
b[results["Proposal ID"] == str(proposal_id)] = True
else:
n_obs.pprint(len(n_obs) + 2)
a = [
np.array(i.split(":"), dtype=str)
for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(",")
]
if a[0][0] == "":
a = [[1]]
if a[0][0] in ["a", "all", "*"]:
b = np.ones(len(results), dtype=bool)
else:
a = [np.array(i, dtype=int) for i in a]
for i in a:
if len(i) > 1:
for j in range(i[0], i[1] + 1):
b[np.array([dataset in obs["Dataset"][obs["Obs"] == j] for dataset in results["Dataset"]])] = True
else:
b[np.array([dataset in obs["Dataset"][obs["Obs"] == i[0]] for dataset in results["Dataset"]])] = True
observations = Observations.query_criteria(obs_id=list(results["Dataset"][b]))
products = Observations.filter_products(
Observations.get_product_list(observations),
productType=["SCIENCE"],
dataproduct_type=["image"],
calib_level=[2],
description="DADS C0F file - Calibrated exposure WFPC/WFPC2/FOC/FOS/GHRS/HSP",
)
products["proposal_id"] = Column(products["proposal_id"], dtype="U35")
products["target_name"] = Column(observations["target_name"])
for prod in products:
prod["proposal_id"] = results["Proposal ID"][results["Dataset"] == prod["productFilename"][: len(results["Dataset"][0])].upper()][0]
for prod in products:
prod["target_name"] = observations["target_name"][observations["obsid"] == prod["obsID"]][0]
tab = unique(products, ["target_name", "proposal_id"])
products["Obs"] = [np.argmax(np.logical_and(tab["proposal_id"] == data["proposal_id"], tab["target_name"] == data["target_name"])) + 1 for data in products]
return target, products
def retrieve_products(target=None, proposal_id=None, output_dir="./data"):
"""
Given a target name and a proposal_id, create the local directories and retrieve the fits files from the MAST Archive
"""
target, products = get_product_list(target=target, proposal_id=proposal_id)
prodpaths = []
# data_dir = path_join(output_dir, target)
out = ""
for obs in unique(products, "Obs"):
filepaths = []
# obs_dir = path_join(data_dir, obs['prodposal_id'])
# if obs['target_name']!=target:
obs_dir = path_join(path_join(output_dir, target), obs["proposal_id"])
if not path_exists(obs_dir):
system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots")))
for file in products["productFilename"][products["Obs"] == obs["Obs"]]:
fpath = path_join(obs_dir, file)
if not path_exists(fpath):
out += "{0:s} : {1:s}\n".format(
file, Observations.download_file(products["dataURI"][products["productFilename"] == file][0], local_path=fpath)[0]
)
else:
out += "{0:s} : Exists\n".format(file)
filepaths.append([obs_dir, file])
prodpaths.append(np.array(filepaths, dtype=str))
return target, prodpaths
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Query MAST for target products")
parser.add_argument("-t", "--target", metavar="targetname", required=False, help="the name of the target", type=str, default=None)
parser.add_argument("-p", "--proposal_id", metavar="proposal_id", required=False, help="the proposal id of the data products", type=int, default=None)
parser.add_argument(
"-o", "--output_dir", metavar="directory_path", required=False, help="output directory path for the data products", type=str, default="./data"
)
args = parser.parse_args()
print(args.target)
prodpaths = retrieve_products(target=args.target, proposal_id=args.proposal_id)
print(prodpaths)