154 lines
8.3 KiB
Python
Executable File
154 lines
8.3 KiB
Python
Executable File
#!/usr/bin/python
|
|
#-*- coding:utf-8 -*-
|
|
"""
|
|
Main script where are progressively added the steps for the FOC pipeline reduction.
|
|
"""
|
|
|
|
#Project libraries
|
|
import sys
|
|
import numpy as np
|
|
import copy
|
|
import lib.fits as proj_fits #Functions to handle fits files
|
|
import lib.reduction as proj_red #Functions used in reduction pipeline
|
|
import lib.plots as proj_plots #Functions for plotting data
|
|
|
|
|
|
def main():
|
|
##### User inputs
|
|
## Input and output locations
|
|
globals()['data_folder'] = "../data/NGC1068_x274020/"
|
|
infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
|
'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
|
'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
|
globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
|
|
|
# globals()['data_folder'] = "../data/NGC1068_x14w010/"
|
|
# infiles = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
|
|
# 'x14w0104t_c0f.fits','x14w0105p_c0f.fits','x14w0106t_c0f.fits']
|
|
# infiles = ['x14w0101t_c1f.fits','x14w0102t_c1f.fits','x14w0103t_c1f.fits',
|
|
# 'x14w0104t_c1f.fits','x14w0105p_c1f.fits','x14w0106t_c1f.fits']
|
|
# globals()['plots_folder'] = "../plots/NGC1068_x14w010/"
|
|
|
|
# globals()['data_folder'] = "../data/3C405_x136060/"
|
|
# infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
|
# infiles = ['x1360601t_c1f.fits','x1360602t_c1f.fits','x1360603t_c1f.fits']
|
|
# globals()['plots_folder'] = "../plots/3C405_x136060/"
|
|
|
|
# globals()['data_folder'] = "../data/CygnusA_x43w0/"
|
|
# infiles = ['x43w0101r_c0f.fits', 'x43w0104r_c0f.fits', 'x43w0107r_c0f.fits',
|
|
# 'x43w0201r_c0f.fits', 'x43w0204r_c0f.fits', 'x43w0102r_c0f.fits',
|
|
# 'x43w0105r_c0f.fits', 'x43w0108r_c0f.fits', 'x43w0202r_c0f.fits',
|
|
# 'x43w0205r_c0f.fits', 'x43w0103r_c0f.fits', 'x43w0106r_c0f.fits',
|
|
# 'x43w0109r_c0f.fits', 'x43w0203r_c0f.fits', 'x43w0206r_c0f.fits']
|
|
# globals()['plots_folder'] = "../plots/CygnusA_x43w0/"
|
|
|
|
# globals()['data_folder'] = "../data/3C109_x3mc010/"
|
|
# infiles = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits']
|
|
# globals()['plots_folder'] = "../plots/3C109_x3mc010/"
|
|
|
|
# globals()['data_folder'] = "../data/MKN463_x2rp030/"
|
|
# infiles = ['x2rp0201t_c0f.fits', 'x2rp0203t_c0f.fits', 'x2rp0205t_c0f.fits',
|
|
# 'x2rp0207t_c0f.fits', 'x2rp0302t_c0f.fits', 'x2rp0304t_c0f.fits',
|
|
# 'x2rp0306t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0204t_c0f.fits',
|
|
# 'x2rp0206t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0303t_c0f.fits',
|
|
# 'x2rp0305t_c0f.fits', 'x2rp0307t_c0f.fits']
|
|
# globals()['plots_folder'] = "../plots/MKN463_x2rp030/"
|
|
|
|
# globals()['data_folder'] = "../data/PG1630+377_x39510/"
|
|
# infiles = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits',
|
|
# 'x3995105r_c0f.fits', 'x3995109r_c0f.fits', 'x3995201r_c0f.fits',
|
|
# 'x3995205r_c0f.fits', 'x3990202m_c0f.fits', 'x3990206m_c0f.fits',
|
|
# 'x3995102r_c0f.fits', 'x3995106r_c0f.fits', 'x399510ar_c0f.fits',
|
|
# 'x3995202r_c0f.fits','x3995206r_c0f.fits']
|
|
# globals()['plots_folder'] = "../plots/PG1630+377_x39510/"
|
|
|
|
## Reduction parameters
|
|
# Deconvolution
|
|
deconvolve = False
|
|
if deconvolve:
|
|
psf = 'gaussian' #Can be user-defined as well
|
|
psf_FWHM = 0.10
|
|
psf_scale = 'arcsec'
|
|
psf_shape=(9,9)
|
|
iterations = 10
|
|
# Error estimation
|
|
error_sub_shape = (200,200)
|
|
display_error = False
|
|
# Data binning
|
|
rebin = True
|
|
if rebin:
|
|
pxsize = 0.35
|
|
px_scale = 'arcsec' #pixel or arcsec
|
|
rebin_operation = 'sum' #sum or average
|
|
# Alignement
|
|
align_center = 'image' #If None will align image to image center
|
|
display_data = False
|
|
# Smoothing
|
|
smoothing_function = 'combine' #gaussian or combine
|
|
smoothing_FWHM = None #If None, no smoothing is done
|
|
smoothing_scale = 'arcsec' #pixel or arcsec
|
|
# Rotation
|
|
rotate = False #rotation to North convention can give erroneous results
|
|
rotate_library = 'scipy' #scipy or pillow
|
|
# Polarization map output
|
|
figname = '3C405_FOC' #target/intrument name
|
|
figtype = '' #additionnal informations
|
|
SNRp_cut = 3 #P measurments with SNR>3
|
|
SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
|
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
|
|
|
##### Pipeline start
|
|
## Step 1:
|
|
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
|
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
|
# Crop data to remove outside blank margins.
|
|
data_array, error_array = proj_red.crop_array(data_array, step=5, null_val=0., inside=True)
|
|
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
|
if deconvolve:
|
|
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations)
|
|
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
|
data_array, error_array = proj_red.get_error(data_array, sub_shape=error_sub_shape, display=display_error, headers=headers, savename=figname+"_errors", plots_folder=plots_folder)
|
|
# Rebin data to desired pixel size.
|
|
if rebin:
|
|
data_array, error_array, headers, Dxy = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation)
|
|
#Align and rescale images with oversampling.
|
|
data_array, error_array = proj_red.align_data(data_array, error_array, upsample_factor=np.min(Dxy).astype(int), ref_center=align_center, return_shifts=False)
|
|
|
|
#Plot array for checking output
|
|
if display_data:
|
|
proj_plots.plot_obs(data_array, headers, vmin=data_array.min(), vmax=data_array.max(), savename=figname+"_center_"+align_center, plots_folder=plots_folder)
|
|
|
|
## Step 2:
|
|
# Compute Stokes I, Q, U with smoothed polarized images
|
|
# SMOOTHING DISCUSSION :
|
|
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
|
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
|
# Bibcode : 1995chst.conf...10J
|
|
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
|
|
|
## Step 3:
|
|
# Rotate images to have North up
|
|
if rotate:
|
|
ref_header = copy.deepcopy(headers[0])
|
|
if rotate_library.lower() in ['scipy','scipy.ndimage']:
|
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers = proj_red.rotate_sc_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, -ref_header['orientat'])
|
|
if rotate_library.lower() in ['pillow','pil']:
|
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers = proj_red.rotate_PIL_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, -ref_header['orientat'])
|
|
# Compute polarimetric parameters (polarization degree and angle).
|
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
|
|
|
## Step 4:
|
|
# Save image to FITS.
|
|
Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers[0], figname+figtype, data_folder=data_folder, return_hdul=True)
|
|
|
|
## Step 5:
|
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display=None)
|
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg')
|
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err')
|
|
|
|
return 0
|
|
|
|
#if __name__ == "__main__":
|
|
# sys.exit(main())
|