Files
FOC_Reduction/src/comparison_Kishimoto.py
2023-05-02 16:44:31 +02:00

172 lines
9.8 KiB
Python
Executable File

#!/usr/bin/env python
from lib.reduction import align_data, crop_array, princ_angle
from lib.background import gauss, bin_centers
from lib.deconvolve import zeropad
from matplotlib.colors import LogNorm
from os.path import join as path_join
from os import walk as path_walk
from astropy.io import fits
from astropy.wcs import WCS
from re import compile as regcompile, IGNORECASE
from scipy.ndimage import shift
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
root_dir = path_join('/home/t.barnouin/Documents/Thesis/HST')
root_dir_K = path_join(root_dir,'Kishimoto','output')
root_dir_S = path_join(root_dir,'FOC_Reduction','output')
root_dir_data_S = path_join(root_dir,'FOC_Reduction','data','NGC1068_x274020')
root_dir_plot_S = path_join(root_dir,'FOC_Reduction','plots','NGC1068_x274020')
filename_S = "NGC1068_FOC_b_10px.fits"
data_K = {}
data_S = {}
for d,i in zip(['I','Q','U','P','PA','sI','sQ','sU','sP','sPA'],[0,1,2,5,8,(3,0,0),(3,1,1),(3,2,2),6,9]):
data_K[d] = np.loadtxt(path_join(root_dir_K,d+'.txt'))
with fits.open(path_join(root_dir_data_S,filename_S)) as f:
if not type(i) is int:
data_S[d] = np.sqrt(f[i[0]].data[i[1],i[2]])
else:
data_S[d] = f[i].data
if i==0:
header = f[i].header
wcs = WCS(header)
convert_flux = header['photflam']
bkg_S = np.median(data_S['I'])/3
bkg_K = np.median(data_K['I'])/3
#zeropad data to get same size of array
shape = data_S['I'].shape
for d in data_K:
data_K[d] = zeropad(data_K[d],shape)
#shift array to get same information in same pixel
data_arr, error_ar, heads, data_msk, shifts, shifts_err = align_data(np.array([data_S['I'],data_K['I']]), [header, header], error_array=np.array([data_S['sI'],data_K['sI']]), background=np.array([bkg_S,bkg_K]), upsample_factor=10., return_shifts=True)
for d in data_K:
data_K[d] = shift(data_K[d],shifts[1],order=1,cval=0.)
#compute pol components from shifted array
for d in [data_S, data_K]:
for i in d:
d[i][np.isnan(d[i])] = 0.
d['P'] = np.where(np.logical_and(np.isfinite(d['I']),d['I']>0.),np.sqrt(d['Q']**2+d['U']**2)/d['I'],0.)
d['sP'] = np.where(np.logical_and(np.isfinite(d['I']),d['I']>0.),np.sqrt((d['Q']**2*d['sQ']**2+d['U']**2*d['sU']**2)/(d['Q']**2+d['U']**2)+((d['Q']/d['I'])**2+(d['U']/d['I'])**2)*d['sI']**2)/d['I'],0.)
d['PA'] = 0.5*np.arctan2(d['U'],d['Q'])+np.pi
d['SNRp'] = np.zeros(d['P'].shape)
d['SNRp'][d['sP']>0.] = d['P'][d['sP']>0.]/d['sP'][d['sP']>0.]
d['SNRi'] = np.zeros(d['I'].shape)
d['SNRi'][d['sI']>0.] = d['I'][d['sI']>0.]/d['sI'][d['sI']>0.]
d['mask'] = np.logical_and(d['SNRi']>30,d['SNRp']>5)
data_S['mask'], data_K['mask'] = np.logical_and(data_S['mask'],data_K['mask']), np.logical_and(data_S['mask'],data_K['mask'])
#####
###Compute histogram of measured polarization in cut
#####
bins=int(data_S['mask'].sum()/5)
bin_size=1./bins
mod_p = np.linspace(0.,1.,300)
for d in [data_S, data_K]:
d['hist'], d['bin_edges'] = np.histogram(d['P'][d['mask']],bins=bins,range=(0.,1.))
d['binning'] = bin_centers(d['bin_edges'])
peak, bins_fwhm = d['binning'][np.argmax(d['hist'])], d['binning'][d['hist']>d['hist'].max()/2.]
fwhm = bins_fwhm[1]-bins_fwhm[0]
p0 = [d['hist'].max(), peak, fwhm]
try:
popt, pcov = curve_fit(gauss, d['binning'], d['hist'], p0=p0)
except RuntimeError:
popt = p0
d['hist_chi2'] = np.sum((d['hist']-gauss(d['binning'],*popt))**2)/d['hist'].size
d['hist_popt'] = popt
fig_p, ax_p = plt.subplots(num="Polarization degree histogram",figsize=(10,6),constrained_layout=True)
ax_p.errorbar(data_S['binning'],data_S['hist'],xerr=bin_size/2.,fmt='b.',ecolor='b',label='P through this pipeline')
ax_p.plot(mod_p,gauss(mod_p,*data_S['hist_popt']),'b--',label='mean = {1:.2f}, stdev = {2:.2f}'.format(*data_S['hist_popt']))
ax_p.errorbar(data_K['binning'],data_K['hist'],xerr=bin_size/2.,fmt='r.',ecolor='r',label="P through Kishimoto's pipeline")
ax_p.plot(mod_p,gauss(mod_p,*data_K['hist_popt']),'r--',label='mean = {1:.2f}, stdev = {2:.2f}'.format(*data_K['hist_popt']))
ax_p.set(xlabel="Polarization degree",ylabel="Counts",title="Histogram of polarization degree computed in the cut for both pipelines.")
ax_p.legend()
fig_p.savefig(path_join(root_dir_plot_S,"NGC1068_K_pol_deg.png"),bbox_inches="tight")
#####
###Compute angular difference between the maps in cut
#####
dtheta = np.where(data_S['mask'], 0.5*np.arctan((np.sin(2*data_S['PA'])*np.cos(2*data_K['PA'])-np.cos(2*data_S['PA'])*np.cos(2*data_K['PA']))/(np.cos(2*data_S['PA'])*np.cos(2*data_K['PA'])+np.cos(2*data_S['PA'])*np.sin(2*data_K['PA']))),np.nan)
fig_pa = plt.figure(num="Polarization degree alignement")
ax_pa = fig_pa.add_subplot(111, projection=wcs)
cbar_ax_pa = fig_pa.add_axes([0.88, 0.12, 0.01, 0.75])
ax_pa.set_title(r"Degree of alignement $\zeta$ of the polarization angles from the 2 pipelines in the cut")
im_pa = ax_pa.imshow(np.cos(2*dtheta), vmin=-1., vmax=1., origin='lower', cmap='bwr', label=r"$\zeta$ between this pipeline and Kishimoto's")
cbar_pa = plt.colorbar(im_pa, cax=cbar_ax_pa, label=r"$\zeta = \cos\left( 2 \cdot \delta\theta_P \right)$")
ax_pa.coords[0].set_axislabel('Right Ascension (J2000)')
ax_pa.coords[1].set_axislabel('Declination (J2000)')
fig_pa.savefig(path_join(root_dir_plot_S,"NGC1068_K_pol_ang.png"),bbox_inches="tight")
#####
###display both polarization maps to check consistency
#####
plt.rcParams.update({'font.size': 10})
fig = plt.figure(num="Polarization maps comparison")
ax = fig.add_subplot(111, projection=wcs)
fig.subplots_adjust(right=0.85)
cbar_ax = fig.add_axes([0.88, 0.12, 0.01, 0.75])
for d in [data_S, data_K]:
d['X'], d['Y'] = np.meshgrid(np.arange(d['I'].shape[1]), np.arange(d['I'].shape[0]))
d['xy_U'], d['xy_V'] = np.where(d['mask'],d['P']*np.cos(np.pi/2.+d['PA']), np.nan), np.where(d['mask'],d['P']*np.sin(np.pi/2.+d['PA']), np.nan)
im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline")
quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.2,color='b',alpha=0.75, label="PA through this pipeline")
quiv1 = ax.quiver(data_K['X'],data_K['Y'],data_K['xy_U'],data_K['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='r',alpha=0.75, label="PA through Kishimoto's pipeline")
ax.set_title(r"$SNR_P \geq 5 \; & \; SNR_I \geq 30$")
#ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
ax.coords[0].set_axislabel('Right Ascension (J2000)')
ax.coords[0].set_axislabel_position('b')
ax.coords[0].set_ticklabel_position('b')
ax.coords[1].set_axislabel('Declination (J2000)')
ax.coords[1].set_axislabel_position('l')
ax.coords[1].set_ticklabel_position('l')
#ax.axis('equal')
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
plt.rcParams.update({'font.size': 8})
ax.legend(loc='upper right')
fig.savefig(path_join(root_dir_plot_S,"NGC1068_K_comparison.png"),bbox_inches="tight")
#compute integrated polarization parameters on a specific cut
for d in [data_S, data_K]:
d['I_dil'] = np.sum(d['I'][d['mask']])
d['sI_dil'] = np.sqrt(np.sum(d['sI'][d['mask']]**2))
d['Q_dil'] = np.sum(d['Q'][d['mask']])
d['sQ_dil'] = np.sqrt(np.sum(d['sQ'][d['mask']]**2))
d['U_dil'] = np.sum(d['U'][d['mask']])
d['sU_dil'] = np.sqrt(np.sum(d['sU'][d['mask']]**2))
d['P_dil'] = np.sqrt(d['Q_dil']**2+d['U_dil']**2)/d['I_dil']
d['sP_dil'] = np.sqrt((d['Q_dil']**2*d['sQ_dil']**2+d['U_dil']**2*d['sU_dil']**2)/(d['Q_dil']**2+d['U_dil']**2)+((d['Q_dil']/d['I_dil'])**2+(d['U_dil']/d['I_dil'])**2)*d['sI_dil']**2)/d['I_dil']
d['PA_dil'] = princ_angle((90./np.pi)*np.arctan2(d['U_dil'],d['Q_dil']))
d['sPA_dil'] = princ_angle((90./(np.pi*(d['Q_dil']**2+d['U_dil']**2)))*np.sqrt(d['Q_dil']**2*d['sU_dil']**2+d['U_dil']**2*d['sU_dil']**2))
print('From this pipeline :\n', "P = {0:.2f} ± {1:.2f} %\n".format(data_S['P_dil']*100.,data_S['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_S['PA_dil'],data_S['sPA_dil']))
print("From Kishimoto's pipeline :\n", "P = {0:.2f} ± {1:.2f} %\n".format(data_K['P_dil']*100.,data_K['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_K['PA_dil'],data_K['sPA_dil']))
#compare different types of error
print("This pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_S['sI'][data_S['mask']]/data_S['I'][data_S['mask']]),np.mean(data_S['sQ'][data_S['mask']]/data_S['Q'][data_S['mask']]),np.mean(data_S['sU'][data_S['mask']]/data_S['U'][data_S['mask']]),np.mean(data_S['sP'][data_S['mask']]/data_S['P'][data_S['mask']])))
print("Kishimoto's pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_K['sI'][data_S['mask']]/data_K['I'][data_S['mask']]),np.mean(data_K['sQ'][data_S['mask']]/data_K['Q'][data_S['mask']]),np.mean(data_K['sU'][data_S['mask']]/data_K['U'][data_S['mask']]),np.mean(data_K['sP'][data_S['mask']]/data_K['P'][data_S['mask']])))
for d,i in zip(['I','Q','U','P','PA','sI','sQ','sU','sP','sPA'],[0,1,2,5,8,(3,0,0),(3,1,1),(3,2,2),6,9]):
data_K[d] = np.loadtxt(path_join(root_dir_K,d+'.txt'))
with fits.open(path_join(root_dir_data_S,filename_S)) as f:
if not type(i) is int:
data_S[d] = np.sqrt(f[i[0]].data[i[1],i[2]])
else:
data_S[d] = f[i].data
if i==0:
header = f[i].header
#from Kishimoto's pipeline : IQU_dir, IQU_shift, IQU_stat, IQU_trans
#from my pipeline : raw_bg, raw_flat, raw_psf, raw_shift, raw_wav, IQU_dir
# but errors from my pipeline are propagated all along, how to compare then ?
plt.show()