210 lines
9.4 KiB
Python
Executable File
210 lines
9.4 KiB
Python
Executable File
#!/usr/bin/python3
|
|
# -*- coding:utf-8 -*-
|
|
"""
|
|
Library function for simplified fits handling.
|
|
|
|
prototypes :
|
|
- get_obs_data(infiles, data_folder) -> data_array, headers
|
|
Extract the observationnal data from fits files
|
|
|
|
- save_Stokes(I, Q, U, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder, return_hdul) -> ( HDUL_data )
|
|
Save computed polarimetry parameters to a single fits file (and return HDUList)
|
|
"""
|
|
|
|
import numpy as np
|
|
from os.path import join as path_join
|
|
from astropy.io import fits
|
|
from astropy.wcs import WCS
|
|
from lib.convex_hull import clean_ROI
|
|
from lib.plots import princ_angle
|
|
|
|
|
|
def get_obs_data(infiles, data_folder="", compute_flux=False):
|
|
"""
|
|
Extract the observationnal data from the given fits files.
|
|
----------
|
|
Inputs:
|
|
infiles : strlist
|
|
List of the fits file names to be added to the observation set.
|
|
data_folder : str, optional
|
|
Relative or absolute path to the folder containing the data.
|
|
compute_flux : boolean, optional
|
|
If True, return data_array will contain flux information, assuming
|
|
raw data are counts and header have keywork EXPTIME and PHOTFLAM.
|
|
Default to False.
|
|
----------
|
|
Returns:
|
|
data_array : numpy.ndarray
|
|
Array of images (2D floats) containing the observation data.
|
|
headers : header list
|
|
List of headers objects corresponding to each image in data_array.
|
|
"""
|
|
data_array, headers = [], []
|
|
for i in range(len(infiles)):
|
|
with fits.open(path_join(data_folder, infiles[i])) as f:
|
|
headers.append(f[0].header)
|
|
data_array.append(f[0].data)
|
|
data_array = np.array(data_array, dtype=np.double)
|
|
|
|
# Prevent negative count value in imported data
|
|
for i in range(len(data_array)):
|
|
data_array[i][data_array[i] < 0.] = 0.
|
|
|
|
# force WCS to convention PCi_ja unitary, cdelt in deg
|
|
for header in headers:
|
|
new_wcs = WCS(header).deepcopy()
|
|
if new_wcs.wcs.has_cd() or (new_wcs.wcs.cdelt[:2] == np.array([1., 1.])).all():
|
|
# Update WCS with relevant information
|
|
if new_wcs.wcs.has_cd():
|
|
old_cd = new_wcs.wcs.cd[:2, :2]
|
|
del new_wcs.wcs.cd
|
|
keys = list(new_wcs.to_header().keys())+['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']
|
|
for key in keys:
|
|
header.remove(key, ignore_missing=True)
|
|
new_cdelt = np.linalg.eig(old_cd)[0]
|
|
elif (new_wcs.wcs.cdelt == np.array([1., 1.])).all() and \
|
|
(new_wcs.array_shape in [(512, 512), (1024, 512), (512, 1024), (1024, 1024)]):
|
|
old_cd = new_wcs.wcs.pc
|
|
new_wcs.wcs.pc = np.dot(old_cd, np.diag(1./new_cdelt))
|
|
new_wcs.wcs.cdelt = new_cdelt
|
|
for key, val in new_wcs.to_header().items():
|
|
header[key] = val
|
|
header['orientat'] = princ_angle(float(header['orientat']))
|
|
|
|
# force WCS for POL60 to have same pixel size as POL0 and POL120
|
|
is_pol60 = np.array([head['filtnam1'].lower() == 'pol60' for head in headers], dtype=bool)
|
|
cdelt = np.round(np.array([WCS(head).wcs.cdelt for head in headers]), 14)
|
|
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
|
|
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
|
|
raise ValueError("Not all images have same pixel size")
|
|
else:
|
|
for i in np.arange(len(headers))[is_pol60]:
|
|
headers[i]['cdelt1'], headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
|
|
|
|
if compute_flux:
|
|
for i in range(len(infiles)):
|
|
# Compute the flux in counts/sec
|
|
data_array[i] /= headers[i]['EXPTIME']
|
|
|
|
return data_array, headers
|
|
|
|
|
|
def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
|
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
|
|
return_hdul=False):
|
|
"""
|
|
Save computed polarimetry parameters to a single fits file,
|
|
updating header accordingly.
|
|
----------
|
|
Inputs:
|
|
I_stokes, Q_stokes, U_stokes, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P : numpy.ndarray
|
|
Images (2D float arrays) containing the computed polarimetric data :
|
|
Stokes parameters I, Q, U, Polarization degree and debieased,
|
|
its error propagated and assuming Poisson noise, Polarization angle,
|
|
its error propagated and assuming Poisson noise.
|
|
Stokes_cov : numpy.ndarray
|
|
Covariance matrix of the Stokes parameters I, Q, U.
|
|
headers : header list
|
|
Header of reference some keywords will be copied from (CRVAL, CDELT,
|
|
INSTRUME, PROPOSID, TARGNAME, ORIENTAT, EXPTOT).
|
|
data_mask : numpy.ndarray
|
|
2D boolean array delimiting the data to work on.
|
|
filename : str
|
|
Name that will be given to the file on writing (will appear in header).
|
|
data_folder : str, optional
|
|
Relative or absolute path to the folder the fits file will be saved to.
|
|
Defaults to current folder.
|
|
return_hdul : boolean, optional
|
|
If True, the function will return the created HDUList from the
|
|
input arrays.
|
|
Defaults to False.
|
|
----------
|
|
Return:
|
|
hdul : astropy.io.fits.hdu.hdulist.HDUList
|
|
HDUList containing I_stokes in the PrimaryHDU, then Q_stokes, U_stokes,
|
|
P, s_P, PA, s_PA in this order. Headers have been updated to relevant
|
|
informations (WCS, orientation, data_type).
|
|
Only returned if return_hdul is True.
|
|
"""
|
|
# Create new WCS object given the modified images
|
|
ref_header = headers[0]
|
|
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
|
new_wcs = WCS(ref_header).deepcopy()
|
|
|
|
if data_mask.shape != (1, 1):
|
|
vertex = clean_ROI(data_mask)
|
|
shape = vertex[1::2]-vertex[0::2]
|
|
new_wcs.array_shape = shape
|
|
new_wcs.wcs.crpix = np.array(new_wcs.wcs.crpix) - vertex[0::-2]
|
|
|
|
header = new_wcs.to_header()
|
|
header['telescop'] = (ref_header['telescop'] if 'TELESCOP' in list(ref_header.keys()) else 'HST', 'telescope used to acquire data')
|
|
header['instrume'] = (ref_header['instrume'] if 'INSTRUME' in list(ref_header.keys()) else 'FOC', 'identifier for instrument used to acuire data')
|
|
header['photplam'] = (ref_header['photplam'], 'Pivot Wavelength')
|
|
header['photflam'] = (ref_header['photflam'], 'Inverse Sensitivity in DN/sec/cm**2/Angst')
|
|
header['exptot'] = (exp_tot, 'Total exposure time in sec')
|
|
header['proposid'] = (ref_header['proposid'], 'PEP proposal identifier for observation')
|
|
header['targname'] = (ref_header['targname'], 'Target name')
|
|
header['orientat'] = (ref_header['orientat'], 'Angle between North and the y-axis of the image')
|
|
header['filename'] = (filename, 'Original filename')
|
|
header['P_int'] = (ref_header['P_int'], 'Integrated polarisation degree')
|
|
header['P_int_err'] = (ref_header['P_int_err'], 'Integrated polarisation degree error')
|
|
header['PA_int'] = (ref_header['PA_int'], 'Integrated polarisation angle')
|
|
header['PA_int_err'] = (ref_header['PA_int_err'], 'Integrated polarisation angle error')
|
|
|
|
# Crop Data to mask
|
|
if data_mask.shape != (1, 1):
|
|
I_stokes = I_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
Q_stokes = Q_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
U_stokes = U_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
P = P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
debiased_P = debiased_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
s_P = s_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
s_P_P = s_P_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
PA = PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
s_PA = s_PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
s_PA_P = s_PA_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
|
|
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
|
|
for i in range(3):
|
|
for j in range(3):
|
|
Stokes_cov[i, j][(1-data_mask).astype(bool)] = 0.
|
|
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
Stokes_cov = new_Stokes_cov
|
|
|
|
data_mask = data_mask[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
|
data_mask = data_mask.astype(float, copy=False)
|
|
|
|
# Create HDUList object
|
|
hdul = fits.HDUList([])
|
|
|
|
# Add I_stokes as PrimaryHDU
|
|
header['datatype'] = ('I_stokes', 'type of data stored in the HDU')
|
|
I_stokes[(1-data_mask).astype(bool)] = 0.
|
|
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
|
|
primary_hdu.name = 'I_stokes'
|
|
hdul.append(primary_hdu)
|
|
|
|
# Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
|
|
for data, name in [[Q_stokes, 'Q_stokes'], [U_stokes, 'U_stokes'],
|
|
[Stokes_cov, 'IQU_cov_matrix'], [P, 'Pol_deg'],
|
|
[debiased_P, 'Pol_deg_debiased'], [s_P, 'Pol_deg_err'],
|
|
[s_P_P, 'Pol_deg_err_Poisson_noise'], [PA, 'Pol_ang'],
|
|
[s_PA, 'Pol_ang_err'], [s_PA_P, 'Pol_ang_err_Poisson_noise'],
|
|
[data_mask, 'Data_mask']]:
|
|
hdu_header = header.copy()
|
|
hdu_header['datatype'] = name
|
|
if not name == 'IQU_cov_matrix':
|
|
data[(1-data_mask).astype(bool)] = 0.
|
|
hdu = fits.ImageHDU(data=data, header=hdu_header)
|
|
hdu.name = name
|
|
hdul.append(hdu)
|
|
|
|
# Save fits file to designated filepath
|
|
hdul.writeto(path_join(data_folder, filename+".fits"), overwrite=True)
|
|
|
|
if return_hdul:
|
|
return hdul
|
|
else:
|
|
return 0
|