Files
FOC_Reduction/src/lib/query.py
2023-09-18 16:57:40 +02:00

194 lines
8.5 KiB
Python
Executable File

#!/usr/bin/python3
#-*- coding:utf-8 -*-
"""
Library function to query and download datatsets from MAST api.
"""
from os import system
from os.path import join as path_join, exists as path_exists
from astroquery.mast import MastMissions, Observations
from astropy.table import unique, Column
from astropy.time import Time, TimeDelta
import astropy.units as u
import numpy as np
def divide_proposal(products):
"""
Divide observation in proposals by time or filter
"""
for pid in np.unique(products['Proposal ID']):
obs = products[products['Proposal ID']==pid].copy()
close_date = np.unique(np.array([TimeDelta(np.abs(Time(obs['Start']).unix-date.unix),format='sec') < 7.*u.d for date in obs['Start']], dtype=bool), axis=0)
if len(close_date)>1:
for date in close_date:
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][date]],axis=0)] = "_".join([obs['Proposal ID'][date][0],str(obs['Start'][date][0])[:10]])
for pid in np.unique(products['Proposal ID']):
obs = products[products['Proposal ID']==pid].copy()
same_filt = np.unique(np.array(np.sum([obs['Filters'][:,1:]==filt[1:] for filt in obs['Filters']],axis=2)<3,dtype=bool),axis=0)
if len(same_filt)>1:
for filt in same_filt:
products['Proposal ID'][np.any([products['Dataset']==dataset for dataset in obs['Dataset'][filt]],axis=0)] = "_".join([obs['Proposal ID'][filt][0],"_".join([fi for fi in obs['Filters'][filt][0][1:] if fi[:-1]!="CLEAR"])])
return products
def get_product_list(target=None, proposal_id=None):
"""
Retrieve products list for a given target from the MAST archive
"""
mission = MastMissions(mission='hst')
radius = '3'
select_cols = [
'sci_data_set_name',
'sci_spec_1234',
'sci_actual_duration',
'sci_start_time',
'sci_stop_time',
'sci_central_wavelength',
'sci_instrume',
'sci_aper_1234',
'sci_targname',
'sci_pep_id',
'sci_pi_last_name']
cols = [
'Dataset',
'Filters',
'Exptime',
'Start',
'Stop',
'Central wavelength',
'Instrument',
'Size',
'Target name',
'Proposal ID',
'PI last name']
if target is None:
target = input("Target name:\n>")
# Use query_object method to resolve the object name into coordinates
results = mission.query_object(
target,
radius=radius,
select_cols=select_cols,
sci_spec_1234='POL*',
sci_obs_type='image',
sci_aec='S',
sci_instrume='foc')
for c, n_c in zip(select_cols, cols):
results.rename_column(c, n_c)
results['Proposal ID'] = Column(results['Proposal ID'],dtype='U35')
results['Filters'] = Column(np.array([filt.split(";") for filt in results['Filters']],dtype=str))
results['Start'] = Column(Time(results['Start']))
results['Stop'] = Column(Time(results['Stop']))
results = divide_proposal(results)
obs = results.copy()
### Remove single observations for which a FIND filter is used
to_remove=[]
for i in range(len(obs)):
if "F1ND" in obs[i]['Filters']:
to_remove.append(i)
obs.remove_rows(to_remove)
### Remove observations for which a polarization filter is missing
polfilt = {"POL0":0,"POL60":1,"POL120":2}
for pid in np.unique(obs['Proposal ID']):
used_pol = np.zeros(3)
for dataset in obs[obs['Proposal ID'] == pid]:
used_pol[polfilt[dataset['Filters'][0]]] += 1
if np.any(used_pol < 1):
obs.remove_rows(np.arange(len(obs))[obs['Proposal ID'] == pid])
tab = unique(obs, ['Target name', 'Proposal ID'])
obs["Obs"] = [np.argmax(np.logical_and(tab['Proposal ID']==data['Proposal ID'],tab['Target name']==data['Target name']))+1 for data in obs]
try:
n_obs = unique(obs[["Obs", "Filters", "Start", "Central wavelength", "Instrument",
"Size", "Target name", "Proposal ID", "PI last name"]], 'Obs')
except IndexError:
raise ValueError(
"There is no observation with POL0, POL60 and POL120 for {0:s} in HST/FOC Legacy Archive".format(target))
b = np.zeros(len(results), dtype=bool)
if not proposal_id is None and str(proposal_id) in obs['Proposal ID']:
b[results['Proposal ID'] == str(proposal_id)] = True
else:
n_obs.pprint(len(n_obs)+2)
a = [np.array(i.split(":"), dtype=str) for i in input("select observations to be downloaded ('1,3,4,5' or '1,3:5' or 'all','*' default to 1)\n>").split(',')]
if a[0][0]=='':
a = [[1]]
if a[0][0] in ['a','all','*']:
b = np.ones(len(results),dtype=bool)
else:
a = [np.array(i,dtype=int) for i in a]
for i in a:
if len(i) > 1:
for j in range(i[0], i[1]+1):
b[np.array([dataset in obs['Dataset'][obs["Obs"] == j] for dataset in results['Dataset']])] = True
else:
b[np.array([dataset in obs['Dataset'][obs['Obs'] == i[0]] for dataset in results['Dataset']])] = True
observations = Observations.query_criteria(obs_id=list(results['Dataset'][b]))
products = Observations.filter_products(Observations.get_product_list(observations),
productType=['SCIENCE'],
dataproduct_type=['image'],
calib_level=[2],
description="DADS C0F file - Calibrated exposure WFPC/WFPC2/FOC/FOS/GHRS/HSP")
products['proposal_id'] = Column(products['proposal_id'],dtype='U35')
products['target_name'] = Column(observations['target_name'])
for prod in products:
prod['proposal_id'] = results['Proposal ID'][results['Dataset']==prod['productFilename'][:len(results['Dataset'][0])].upper()][0]
for prod in products:
prod['target_name'] = observations['target_name'][observations['obsid']==prod['obsID']][0]
tab = unique(products, ['target_name', 'proposal_id'])
if len(tab)>1 and np.all(tab['target_name']==tab['target_name'][0]):
target = tab['target_name'][0]
products["Obs"] = [np.argmax(np.logical_and(tab['proposal_id']==data['proposal_id'],tab['target_name']==data['target_name']))+1 for data in products]
return target, products
def retrieve_products(target=None, proposal_id=None, output_dir='./data'):
"""
Given a target name and a proposal_id, create the local directories and retrieve the fits files from the MAST Archive
"""
target, products = get_product_list(target=target,proposal_id=proposal_id)
prodpaths = []
data_dir = path_join(output_dir, target)
out = ""
for obs in unique(products,'Obs'):
filepaths = []
#obs_dir = path_join(data_dir, obs['prodposal_id'])
#if obs['target_name']!=target:
obs_dir = path_join(path_join(output_dir, target), obs['proposal_id'])
if not path_exists(obs_dir):
system("mkdir -p {0:s} {1:s}".format(obs_dir,obs_dir.replace("data","plots")))
for file in products['productFilename'][products['Obs'] == obs['Obs']]:
fpath = path_join(obs_dir, file)
if not path_exists(fpath):
out += "{0:s} : {1:s}\n".format(file, Observations.download_file(
products['dataURI'][products['productFilename'] == file][0], local_path=fpath)[0])
else:
out += "{0:s} : Exists\n".format(file)
filepaths.append([obs_dir,file])
prodpaths.append(np.array(filepaths,dtype=str))
return target, prodpaths
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Query MAST for target products')
parser.add_argument('-t','--target', metavar='targetname', required=False,
help='the name of the target', type=str, default=None)
parser.add_argument('-p','--proposal_id', metavar='proposal_id', required=False,
help='the proposal id of the data products', type=int, default=None)
parser.add_argument('-o','--output_dir', metavar='directory_path', required=False,
help='output directory path for the data products', type=str, default="./data")
args = parser.parse_args()
prodpaths = retrieve_products(target=args.target, proposal_id=args.proposal_id)
print(prodpaths)