100 lines
5.7 KiB
Python
100 lines
5.7 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from astropy.io.fits import open as fits_open
|
|
from astropy.wcs import WCS
|
|
from lib.utils import CenterConf, PCconf
|
|
from matplotlib.colors import LogNorm
|
|
from matplotlib.patches import Rectangle
|
|
|
|
levelssnr = np.array([3.0, 4.0])
|
|
levelsconf = np.array([0.99])
|
|
|
|
NGC1068 = fits_open("./data/NGC1068/5144/NGC1068_FOC_b0.05arcsec_c0.07arcsec.fits")
|
|
NGC1068conf = PCconf(
|
|
NGC1068["Q_STOKES"].data / NGC1068["I_STOKES"].data,
|
|
NGC1068["U_STOKES"].data / NGC1068["I_STOKES"].data,
|
|
np.sqrt(NGC1068["IQU_COV_MATRIX"].data[1, 1]) / NGC1068["I_STOKES"].data,
|
|
np.sqrt(NGC1068["IQU_COV_MATRIX"].data[2, 2]) / NGC1068["I_STOKES"].data,
|
|
)
|
|
NGC1068mask = NGC1068["DATA_MASK"].data.astype(bool)
|
|
NGC1068snr = np.full(NGC1068mask.shape, np.nan)
|
|
NGC1068snr[NGC1068["POL_DEG_ERR"].data > 0.0] = (
|
|
NGC1068["POL_DEG_DEBIASED"].data[NGC1068["POL_DEG_ERR"].data > 0.0] / NGC1068["POL_DEG_ERR"].data[NGC1068["POL_DEG_ERR"].data > 0.0]
|
|
)
|
|
|
|
NGC1068centconf, NGC1068center = CenterConf(NGC1068conf > 0.99, NGC1068["POL_ANG"].data, NGC1068["POL_ANG_ERR"].data)
|
|
|
|
figngc, axngc = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(NGC1068[0].header)))
|
|
|
|
axngc[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours")
|
|
imngc = axngc[0].imshow(NGC1068["I_STOKES"].data * NGC1068["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno")
|
|
ngcsnrcont = axngc[0].contour(NGC1068snr, levelssnr, colors="b")
|
|
ngcconfcont = axngc[0].contour(NGC1068conf, levelsconf, colors="r")
|
|
ngcconfcenter = axngc[0].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center")
|
|
ngcconfcentcont = axngc[0].contour(NGC1068centconf, 1.-levelsconf, colors="k")
|
|
handles, labels = axngc[0].get_legend_handles_labels()
|
|
labels.append("SNR contours")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcsnrcont.collections[0].get_edgecolor()[0]))
|
|
labels.append("CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcconfcont.collections[0].get_edgecolor()[0]))
|
|
labels.append("Center CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcconfcentcont.collections[0].get_edgecolor()[0]))
|
|
axngc[0].legend(handles=handles, labels=labels)
|
|
|
|
axngc[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map")
|
|
ngccent = axngc[1].imshow(NGC1068centconf, vmin=0.0, cmap="inferno")
|
|
ngccentcont = axngc[1].contour(NGC1068centconf, 1.-levelsconf, colors="grey")
|
|
ngccentcenter = axngc[1].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center")
|
|
handles, labels = axngc[1].get_legend_handles_labels()
|
|
labels.append("CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngccentcont.collections[0].get_edgecolor()[0]))
|
|
axngc[1].legend(handles=handles, labels=labels)
|
|
|
|
figngc.savefig("NGC1068_center.pdf",dpi=150,facecolor="None")
|
|
|
|
###################################################################################################
|
|
|
|
MRK463E = fits_open("./data/MRK463E/5960/MRK463E_FOC_b0.05arcsec_c0.07arcsec.fits")
|
|
MRK463Econf = PCconf(
|
|
MRK463E["Q_STOKES"].data / MRK463E["I_STOKES"].data,
|
|
MRK463E["U_STOKES"].data / MRK463E["I_STOKES"].data,
|
|
np.sqrt(MRK463E["IQU_COV_MATRIX"].data[1, 1]) / MRK463E["I_STOKES"].data,
|
|
np.sqrt(MRK463E["IQU_COV_MATRIX"].data[2, 2]) / MRK463E["I_STOKES"].data,
|
|
)
|
|
MRK463Emask = MRK463E["DATA_MASK"].data.astype(bool)
|
|
MRK463Esnr = np.full(MRK463Emask.shape, np.nan)
|
|
MRK463Esnr[MRK463E["POL_DEG_ERR"].data > 0.0] = (
|
|
MRK463E["POL_DEG_DEBIASED"].data[MRK463E["POL_DEG_ERR"].data > 0.0] / MRK463E["POL_DEG_ERR"].data[MRK463E["POL_DEG_ERR"].data > 0.0]
|
|
)
|
|
|
|
MRK463Ecentconf, MRK463Ecenter = CenterConf(MRK463Econf > 0.99, MRK463E["POL_ANG"].data, MRK463E["POL_ANG_ERR"].data)
|
|
|
|
figmrk, axmrk = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(MRK463E[0].header)))
|
|
|
|
axmrk[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours")
|
|
immrk = axmrk[0].imshow(MRK463E["I_STOKES"].data * MRK463E["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno")
|
|
mrksnrcont = axmrk[0].contour(MRK463Esnr, levelssnr, colors="b")
|
|
mrkconfcont = axmrk[0].contour(MRK463Econf, levelsconf, colors="r")
|
|
mrkconfcenter = axmrk[0].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center")
|
|
mrkconfcentcont = axmrk[0].contour(MRK463Ecentconf, 1.-levelsconf, colors="k")
|
|
handles, labels = axmrk[1].get_legend_handles_labels()
|
|
labels.append("SNR contours")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrksnrcont.collections[0].get_edgecolor()[0]))
|
|
labels.append("CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkconfcont.collections[0].get_edgecolor()[0]))
|
|
labels.append("Center CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkconfcentcont.collections[0].get_edgecolor()[0]))
|
|
axmrk[0].legend(handles=handles, labels=labels)
|
|
|
|
axmrk[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map")
|
|
mrkcent = axmrk[1].imshow(MRK463Ecentconf, vmin=0.0, cmap="inferno")
|
|
mrkcentcont = axmrk[1].contour(MRK463Ecentconf, 1.-levelsconf, colors="grey")
|
|
mrkcentcenter = axmrk[1].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center")
|
|
handles, labels = axmrk[1].get_legend_handles_labels()
|
|
labels.append("CONF99 contour")
|
|
handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkcentcont.collections[0].get_edgecolor()[0]))
|
|
axmrk[1].legend(handles=handles, labels=labels)
|
|
|
|
figmrk.savefig("MRK463E_center.pdf",dpi=150,facecolor="None")
|
|
plt.show()
|