#!/usr/bin/python3 # -*- coding:utf-8 -*- """ Main script where are progressively added the steps for the FOC pipeline reduction. """ # Project libraries import numpy as np from copy import deepcopy import lib.fits as proj_fits # Functions to handle fits files import lib.reduction as proj_red # Functions used in reduction pipeline import lib.plots as proj_plots # Functions for plotting data from lib.query import retrieve_products, path_exists, system from matplotlib.colors import LogNorm def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=0, interactive=0): # Reduction parameters # Deconvolution deconvolve = False if deconvolve: # from lib.deconvolve import from_file_psf psf = 'gaussian' # Can be user-defined as well # psf = from_file_psf(data_folder+psf_file) psf_FWHM = 0.15 psf_scale = 'arcsec' psf_shape = (25, 25) iterations = 5 algo = "richardson" # Initial crop display_crop = False # Background estimation error_sub_type = 'freedman-diaconis' # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51)) subtract_error = 1.00 display_error = False # Data binning rebin = True pxsize = 0.10 px_scale = 'arcsec' # pixel, arcsec or full rebin_operation = 'sum' # sum or average # Alignement align_center = 'center' # If None will not align the images display_bkg = False display_align = False display_data = False # Smoothing smoothing_function = 'combine' # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine smoothing_FWHM = 0.10 # If None, no smoothing is done smoothing_scale = 'arcsec' # pixel or arcsec # Rotation rotate_data = False # rotation to North convention can give erroneous results rotate_stokes = True # Final crop crop = False # Crop to desired ROI interactive = False # Whether to output to intercative analysis tool # Polarization map output SNRp_cut = 3. # P measurments with SNR>3 SNRi_cut = 30. # I measurments with SNR>30, which implies an uncertainty in P of 4.7%. flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None vec_scale = 3 step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length # Pipeline start # Step 1: # Get data from fits files and translate to flux in erg/cm²/s/Angstrom. if infiles is not None: prod = np.array([["/".join(filepath.split('/')[:-1]), filepath.split('/')[-1]] for filepath in infiles], dtype=str) obs_dir = "/".join(infiles[0].split("/")[:-1]) if not path_exists(obs_dir): system("mkdir -p {0:s} {1:s}".format(obs_dir, obs_dir.replace("data", "plots"))) if target is None: target = input("Target name:\n>") else: target, products = retrieve_products(target, proposal_id, output_dir=output_dir) prod = products.pop() for prods in products: main(target=target, infiles=["/".join(pr) for pr in prods], output_dir=output_dir) data_folder = prod[0][0] try: plots_folder = data_folder.replace("data", "plots") except ValueError: plots_folder = "." if not path_exists(plots_folder): system("mkdir -p {0:s} ".format(plots_folder)) infiles = [p[1] for p in prod] data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True) figname = "_".join([target, "FOC"]) if rebin: if px_scale not in ['full']: figtype = "".join(["b", "{0:.2f}".format(pxsize), px_scale]) # additionnal informations else: figtype = "full" if smoothing_FWHM is not None: figtype += "_"+"".join(["".join([s[0] for s in smoothing_function.split("_")]), "{0:.2f}".format(smoothing_FWHM), smoothing_scale]) # additionnal informations if align_center is None: figtype += "_not_aligned" # Crop data to remove outside blank margins. data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder) # Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM. if deconvolve: data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo) # Estimate error from data background, estimated from sub-image of desired sub_shape. background = None data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, subtract_error=subtract_error, display=display_error, savename="_".join([figname, "errors"]), plots_folder=plots_folder, return_background=True) if display_bkg: proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "bkg"]), plots_folder=plots_folder) # Align and rescale images with oversampling. data_array, error_array, headers, data_mask = proj_red.align_data( data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False) if display_align: proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, str(align_center)]), plots_folder=plots_folder) # Rebin data to desired pixel size. if rebin: data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array( data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask) # Rotate data to have North up if rotate_data: data_mask = np.ones(data_array.shape[1:]).astype(bool) alpha = headers[0]['orientat'] data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -alpha) # Plot array for checking output if display_data and px_scale.lower() not in ['full', 'integrate']: proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array > 0.].min()*headers[0]['photflam'], vmax=data_array[data_array > 0.].max()*headers[0]['photflam'], savename="_".join([figname, "rebin"]), plots_folder=plots_folder) background = np.array([np.array(bkg).reshape(1, 1) for bkg in background]) background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1'] == head['filtnam1'] for h in headers], dtype=bool)].mean()) ** 2/np.sum([h['filtnam1'] == head['filtnam1'] for h in headers]))).reshape(1, 1) for bkg, head in zip(background, headers)]) # Step 2: # Compute Stokes I, Q, U with smoothed polarized images # SMOOTHING DISCUSSION : # FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide # see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2 # Bibcode : 1995chst.conf...10J I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False) I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False) # Step 3: # Rotate images to have North up if rotate_stokes: I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None) I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), headers, SNRi_cut=None) # Compute polarimetric parameters (polarisation degree and angle). P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers) P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers) # Step 4: # Save image to FITS. Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, "_".join([figname, figtype]), data_folder=data_folder, return_hdul=True) data_mask = Stokes_test[-1].data.astype(bool) # Step 5: # crop to desired region of interest (roi) if crop: figtype += "_crop" stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test), norm=LogNorm()) stokescrop.crop() stokescrop.writeto("/".join([data_folder, "_".join([figname, figtype+".fits"])])) Stokes_test, data_mask, headers = stokescrop.hdul_crop, stokescrop.data_mask, [dataset.header for dataset in stokescrop.hdul_crop] print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *proj_plots.sci_not(Stokes_test[0].data[data_mask].sum()*headers[0]['photflam'], np.sqrt(Stokes_test[3].data[0, 0][data_mask].sum())*headers[0]['photflam'], 2, out=int))) print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]['p_int']*100., np.ceil(headers[0]['p_int_err']*1000.)/10.)) print("PA_int = {0:.1f} ±t {1:.1f} °".format(headers[0]['pa_int'], np.ceil(headers[0]['pa_int_err']*10.)/10.)) # Background values print("F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'], *proj_plots.sci_not(I_bkg[0, 0]*headers[0]['photflam'], np.sqrt(S_cov_bkg[0, 0][0, 0])*headers[0]['photflam'], 2, out=int))) print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0, 0]*100., np.ceil(s_P_bkg[0, 0]*1000.)/10.)) print("PA_bkg = {0:.1f} ± {1:.1f} °".format(PA_bkg[0, 0], np.ceil(s_PA_bkg[0, 0]*10.)/10.)) # Plot polarisation map (Background is either total Flux, Polarization degree or Polarization degree error). if px_scale.lower() not in ['full', 'integrate'] and not interactive: proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype]), plots_folder=plots_folder) proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I"]), plots_folder=plots_folder, display='Intensity') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_flux"]), plots_folder=plots_folder, display='Pol_Flux') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P"]), plots_folder=plots_folder, display='Pol_deg') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "PA"]), plots_folder=plots_folder, display='Pol_ang') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "I_err"]), plots_folder=plots_folder, display='I_err') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "P_err"]), plots_folder=plots_folder, display='Pol_deg_err') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRi"]), plots_folder=plots_folder, display='SNRi') proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim, step_vec=step_vec, vec_scale=vec_scale, savename="_".join([figname, figtype, "SNRp"]), plots_folder=plots_folder, display='SNRp') elif not interactive: proj_plots.polarisation_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename="_".join([figname, figtype]), plots_folder=plots_folder, display='integrate') elif px_scale.lower() not in ['full', 'integrate']: proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim) return 0 if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Query MAST for target products') parser.add_argument('-t', '--target', metavar='targetname', required=False, help='the name of the target', type=str, default=None) parser.add_argument('-p', '--proposal_id', metavar='proposal_id', required=False, help='the proposal id of the data products', type=int, default=None) parser.add_argument('-f', '--files', metavar='path', required=False, nargs='*', help='the full or relative path to the data products', default=None) parser.add_argument('-o', '--output_dir', metavar='directory_path', required=False, help='output directory path for the data products', type=str, default="./data") parser.add_argument('-c', '--crop', metavar='crop_boolean', required=False, help='whether to crop the analysis region', type=int, default=0) parser.add_argument('-i', '--interactive', metavar='interactive_boolean', required=False, help='whether to output to the interactive analysis tool', type=int, default=0) args = parser.parse_args() exitcode = main(target=args.target, proposal_id=args.proposal_id, infiles=args.files, output_dir=args.output_dir, crop=args.crop, interactive=args.interactive) print("Finished with ExitCode: ", exitcode)