""" Library functions for phase cross-correlation computation. """ # Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+) # Otherwise fall back to numpy.fft. # Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer # C++/pybind11 version called pypocketfft try: import scipy.fft as fft except ImportError: import numpy.fft as fft import numpy as np def _upsampled_dft(data, upsampled_region_size, upsample_factor=1, axis_offsets=None): """ Upsampled DFT by matrix multiplication. This code is intended to provide the same result as if the following operations were performed: - Embed the array "data" in an array that is ``upsample_factor`` times larger in each dimension. ifftshift to bring the center of the image to (1,1). - Take the FFT of the larger array. - Extract an ``[upsampled_region_size]`` region of the result, starting with the ``[axis_offsets+1]`` element. It achieves this result by computing the DFT in the output array without the need to zeropad. Much faster and memory efficient than the zero-padded FFT approach if ``upsampled_region_size`` is much smaller than ``data.size * upsample_factor``. ---------- Inputs: data : array The input data array (DFT of original data) to upsample. upsampled_region_size : integer or tuple of integers, optional The size of the region to be sampled. If one integer is provided, it is duplicated up to the dimensionality of ``data``. upsample_factor : integer, optional The upsampling factor. Defaults to 1. axis_offsets : tuple of integers, optional The offsets of the region to be sampled. Defaults to None (uses image center) ---------- Returns: output : ndarray The upsampled DFT of the specified region. """ # if people pass in an integer, expand it to a list of equal-sized sections if not hasattr(upsampled_region_size, "__iter__"): upsampled_region_size = [upsampled_region_size, ] * data.ndim else: if len(upsampled_region_size) != data.ndim: raise ValueError("shape of upsampled region sizes must be equal " "to input data's number of dimensions.") if axis_offsets is None: axis_offsets = [0, ] * data.ndim else: if len(axis_offsets) != data.ndim: raise ValueError("number of axis offsets must be equal to input " "data's number of dimensions.") im2pi = 1j * 2 * np.pi dim_properties = list(zip(data.shape, upsampled_region_size, axis_offsets)) for (n_items, ups_size, ax_offset) in dim_properties[::-1]: kernel = ((np.arange(ups_size) - ax_offset)[:, None] * fft.fftfreq(n_items, upsample_factor)) kernel = np.exp(-im2pi * kernel) # Equivalent to: # data[i, j, k] = kernel[i, :] @ data[j, k].T data = np.tensordot(kernel, data, axes=(1, -1)) return data def _compute_phasediff(cross_correlation_max): """ Compute global phase difference between the two images (should be zero if images are non-negative). ---------- Inputs: cross_correlation_max : complex The complex value of the cross correlation at its maximum point. """ return np.arctan2(cross_correlation_max.imag, cross_correlation_max.real) def _compute_error(cross_correlation_max, src_amp, target_amp): """ Compute RMS error metric between ``src_image`` and ``target_image``. ---------- Inputs: cross_correlation_max : complex The complex value of the cross correlation at its maximum point. src_amp : float The normalized average image intensity of the source image target_amp : float The normalized average image intensity of the target image """ error = 1.0 - cross_correlation_max * cross_correlation_max.conj() /\ (src_amp * target_amp) return np.sqrt(np.abs(error)) def phase_cross_correlation(reference_image, moving_image, *, upsample_factor=1, space="real", return_error=True, overlap_ratio=0.3): """ Efficient subpixel image translation registration by cross-correlation. This code gives the same precision as the FFT upsampled cross-correlation in a fraction of the computation time and with reduced memory requirements. It obtains an initial estimate of the cross-correlation peak by an FFT and then refines the shift estimation by upsampling the DFT only in a small neighborhood of that estimate by means of a matrix-multiply DFT. ---------- Inputs: reference_image : array Reference image. moving_image : array Image to register. Must be same dimensionality as ``reference_image``. upsample_factor : int, optional^ Upsampling factor. Images will be registered to within ``1 / upsample_factor`` of a pixel. For example ``upsample_factor == 20`` means the images will be registered within 1/20th of a pixel. Default is 1 (no upsampling). Not used if any of ``reference_mask`` or ``moving_mask`` is not None. space : string, one of "real" or "fourier", optional Defines how the algorithm interprets input data. "real" means data will be FFT'd to compute the correlation, while "fourier" data will bypass FFT of input data. Case insensitive. return_error : bool, optional Returns error and phase difference if on, otherwise only shifts are returned. overlap_ratio : float, optional Minimum allowed overlap ratio between images. The correlation for translations corresponding with an overlap ratio lower than this threshold will be ignored. A lower `overlap_ratio` leads to smaller maximum translation, while a higher `overlap_ratio` leads to greater robustness against spurious matches due to small overlap between masked images. ---------- Returns: shifts : ndarray Shift vector (in pixels) required to register ``moving_image`` with ``reference_image``. Axis ordering is consistent with numpy (e.g. Z, Y, X) error : float Translation invariant normalized RMS error between ``reference_image`` and ``moving_image``. phasediff : float Global phase difference between the two images (should be zero if images are non-negative). ---------- References: [1] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, "Efficient subpixel image registration algorithms," Optics Letters 33, 156-158 (2008). :DOI:`10.1364/OL.33.000156` [2] James R. Fienup, "Invariant error metrics for image reconstruction" Optics Letters 36, 8352-8357 (1997). :DOI:`10.1364/AO.36.008352` [3] Dirk Padfield. Masked Object Registration in the Fourier Domain. IEEE Transactions on Image Processing, vol. 21(5), pp. 2706-2718 (2012). :DOI:`10.1109/TIP.2011.2181402` [4] D. Padfield. "Masked FFT registration". In Proc. Computer Vision and Pattern Recognition, pp. 2918-2925 (2010). :DOI:`10.1109/CVPR.2010.5540032` """ # images must be the same shape if reference_image.shape != moving_image.shape: raise ValueError("images must be same shape") # assume complex data is already in Fourier space if space.lower() == 'fourier': src_freq = reference_image target_freq = moving_image # real data needs to be fft'd. elif space.lower() == 'real': src_freq = fft.fftn(reference_image) target_freq = fft.fftn(moving_image) else: raise ValueError('space argument must be "real" of "fourier"') # Whole-pixel shift - Compute cross-correlation by an IFFT shape = src_freq.shape image_product = src_freq * target_freq.conj() cross_correlation = fft.ifftn(image_product) # Locate maximum maxima = np.unravel_index(np.argmax(np.abs(cross_correlation)), cross_correlation.shape) midpoints = np.array([np.fix(axis_size / 2) for axis_size in shape]) shifts = np.stack(maxima).astype(np.float64) shifts[shifts > midpoints] -= np.array(shape)[shifts > midpoints] if upsample_factor == 1: if return_error: src_amp = np.sum(np.real(src_freq * src_freq.conj())) src_amp /= src_freq.size target_amp = np.sum(np.real(target_freq * target_freq.conj())) target_amp /= target_freq.size CCmax = cross_correlation[maxima] # If upsampling > 1, then refine estimate with matrix multiply DFT else: # Initial shift estimate in upsampled grid shifts = np.round(shifts * upsample_factor) / upsample_factor upsampled_region_size = np.ceil(upsample_factor * 1.5) # Center of output array at dftshift + 1 dftshift = np.fix(upsampled_region_size / 2.0) upsample_factor = np.array(upsample_factor, dtype=np.float64) # Matrix multiply DFT around the current shift estimate sample_region_offset = dftshift - shifts*upsample_factor cross_correlation = _upsampled_dft(image_product.conj(), upsampled_region_size, upsample_factor, sample_region_offset).conj() # Locate maximum and map back to original pixel grid maxima = np.unravel_index(np.argmax(np.abs(cross_correlation)), cross_correlation.shape) CCmax = cross_correlation[maxima] maxima = np.stack(maxima).astype(np.float64) - dftshift shifts = shifts + maxima / upsample_factor if return_error: src_amp = np.sum(np.real(src_freq * src_freq.conj())) target_amp = np.sum(np.real(target_freq * target_freq.conj())) # If its only one row or column the shift along that dimension has no # effect. We set to zero. for dim in range(src_freq.ndim): if shape[dim] == 1: shifts[dim] = 0 if return_error: # Redirect user to masked_phase_cross_correlation if NaNs are observed if np.isnan(CCmax) or np.isnan(src_amp) or np.isnan(target_amp): raise ValueError( "NaN values found, please remove NaNs from your input data") return shifts, _compute_error(CCmax, src_amp, target_amp), \ _compute_phasediff(CCmax) else: return shifts