#!/usr/bin/env python from lib.reduction import align_data, crop_array, princ_angle from lib.deconvolve import zeropad from matplotlib.colors import LogNorm from os.path import join as path_join from os import walk as path_walk from astropy.io import fits from astropy.wcs import WCS from re import compile as regcompile, IGNORECASE from scipy.ndimage import shift import numpy as np import matplotlib.pyplot as plt root_dir = path_join('/home/t.barnouin/Thesis/HST') root_dir_K = path_join(root_dir,'Kishimoto','output') root_dir_S = path_join(root_dir,'FOC_Reduction','output') root_dir_data_S = path_join(root_dir,'FOC_Reduction','data','NGC1068_x274020') data_K = {} data_S = {} for d,i in zip(['I','Q','U','P','PA','sI','sQ','sU','sP','sPA'],[0,1,2,5,8,(3,0,0),(3,1,1),(3,2,2),6,9]): data_K[d] = np.loadtxt(path_join(root_dir_K,d+'.txt')) with fits.open(path_join(root_dir_data_S,'NGC1068_FOC_bin10px.fits')) as f: if not type(i) is int: data_S[d] = np.sqrt(f[i[0]].data[i[1],i[2]]) else: data_S[d] = f[i].data if i==0: header = f[i].header wcs = WCS(header) convert_flux = header['photflam'] #zeropad data to get same size of array shape = data_S['I'].shape for d in data_K: data_K[d] = zeropad(data_K[d],shape) #shift array to get same information in same pixel data_arr, error_ar, heads, data_msk, shifts, shifts_err = align_data(np.array([data_S['I'],data_K['I']]), [header, header], upsample_factor=10., return_shifts=True) for d in data_K: data_K[d] = shift(data_K[d],shifts[1],order=1,cval=0.) #compute pol components from shifted array for d in [data_S, data_K]: for i in d: d[i][np.isnan(d[i])] = 0. d['P'] = np.where(np.logical_and(np.isfinite(d['I']),d['I']>0.),np.sqrt(d['Q']**2+d['U']**2)/d['I'],0.) d['sP'] = np.where(np.logical_and(np.isfinite(d['I']),d['I']>0.),np.sqrt((d['Q']**2*d['sQ']**2+d['U']**2*d['sU']**2)/(d['Q']**2+d['U']**2)+((d['Q']/d['I'])**2+(d['U']/d['I'])**2)*d['sI']**2)/d['I'],0.) d['PA'] = princ_angle((90./np.pi)*np.arctan2(d['U'],d['Q'])+180.) d['SNRp'] = np.zeros(d['P'].shape) d['SNRp'][d['sP']>0.] = d['P'][d['sP']>0.]/d['sP'][d['sP']>0.] d['SNRi'] = np.zeros(d['I'].shape) d['SNRi'][d['sI']>0.] = d['I'][d['sI']>0.]/d['sI'][d['sI']>0.] d['mask'] = np.logical_and(d['SNRi']>30,d['SNRp']>5) data_S['mask'], data_K['mask'] = np.logical_and(data_S['mask'],data_K['mask']), np.logical_and(data_S['mask'],data_K['mask']) for d in [data_S, data_K]: d['X'], d['Y'] = np.meshgrid(np.arange(d['I'].shape[1]), np.arange(d['I'].shape[0])) d['xy_U'], d['xy_V'] = np.where(d['mask'],d['P']*np.cos(np.pi/2.+d['PA']*np.pi/180.), np.nan), np.where(d['mask'],d['P']*np.sin(np.pi/2.+d['PA']*np.pi/180.), np.nan) #display both polarization maps to check consistencfig = plt.figure() plt.rcParams.update({'font.size': 20}) fig = plt.figure() ax = fig.add_subplot(111, projection=wcs) fig.subplots_adjust(right=0.85) cbar_ax = fig.add_axes([0.88, 0.12, 0.01, 0.75]) im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline") #im0 = ax.imshow(data_K['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through Kishimoto's pipeline") #im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline") #im0 = ax.imshow(data_K['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through Kishimoto's pipeline") #im0 = ax.imshow(data_S['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through this pipeline") quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='b',alpha=0.75, label="PA through this pipeline") quiv1 = ax.quiver(data_K['X'],data_K['Y'],data_K['xy_U'],data_K['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='r',alpha=0.75, label="PA through Kishimoto's pipeline") ax.set_title(r"$SNR_P \geq 5 \; & \; SNR_I \geq 30$") #ax.coords.grid(True, color='white', ls='dotted', alpha=0.5) ax.coords[0].set_axislabel('Right Ascension (J2000)') ax.coords[0].set_axislabel_position('b') ax.coords[0].set_ticklabel_position('b') ax.coords[1].set_axislabel('Declination (J2000)') ax.coords[1].set_axislabel_position('l') ax.coords[1].set_ticklabel_position('l') #ax.axis('equal') cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]") #cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$P$ [%]") #cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$\theta_P$ [°]") plt.rcParams.update({'font.size': 15}) ax.legend(loc='upper right') #compute integrated polarization parameters on a specific cut for d in [data_S, data_K]: d['I_dil'] = np.sum(d['I'][d['mask']]) d['sI_dil'] = np.sqrt(np.sum(d['sI'][d['mask']]**2)) d['Q_dil'] = np.sum(d['Q'][d['mask']]) d['sQ_dil'] = np.sqrt(np.sum(d['sQ'][d['mask']]**2)) d['U_dil'] = np.sum(d['U'][d['mask']]) d['sU_dil'] = np.sqrt(np.sum(d['sU'][d['mask']]**2)) d['P_dil'] = np.sqrt(d['Q_dil']**2+d['U_dil']**2)/d['I_dil'] d['sP_dil'] = np.sqrt((d['Q_dil']**2*d['sQ_dil']**2+d['U_dil']**2*d['sU_dil']**2)/(d['Q_dil']**2+d['U_dil']**2)+((d['Q_dil']/d['I_dil'])**2+(d['U_dil']/d['I_dil'])**2)*d['sI_dil']**2)/d['I_dil'] d['PA_dil'] = princ_angle((90./np.pi)*np.arctan2(d['U_dil'],d['Q_dil'])) d['sPA_dil'] = princ_angle((90./(np.pi*(d['Q_dil']**2+d['U_dil']**2)))*np.sqrt(d['Q_dil']**2*d['sU_dil']**2+d['U_dil']**2*d['sU_dil']**2)) print('From this pipeline :\n', "P = {0:.2f} ± {1:.2f} %\n".format(data_S['P_dil']*100.,data_S['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_S['PA_dil'],data_S['sPA_dil'])) print("From Kishimoto's pipeline :\n", "P = {0:.2f} ± {1:.2f} %\n".format(data_K['P_dil']*100.,data_K['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_K['PA_dil'],data_K['sPA_dil'])) #compare different types of error print("This pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_S['sI'][data_S['mask']]/data_S['I'][data_S['mask']]),np.mean(data_S['sQ'][data_S['mask']]/data_S['Q'][data_S['mask']]),np.mean(data_S['sU'][data_S['mask']]/data_S['U'][data_S['mask']]),np.mean(data_S['sP'][data_S['mask']]/data_S['P'][data_S['mask']]))) print("Kishimoto's pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_K['sI'][data_S['mask']]/data_K['I'][data_S['mask']]),np.mean(data_K['sQ'][data_S['mask']]/data_K['Q'][data_S['mask']]),np.mean(data_K['sU'][data_S['mask']]/data_K['U'][data_S['mask']]),np.mean(data_K['sP'][data_S['mask']]/data_K['P'][data_S['mask']]))) for d,i in zip(['I','Q','U','P','PA','sI','sQ','sU','sP','sPA'],[0,1,2,5,8,(3,0,0),(3,1,1),(3,2,2),6,9]): data_K[d] = np.loadtxt(path_join(root_dir_K,d+'.txt')) with fits.open(path_join(root_dir_data_S,'NGC1068_FOC_bin10px.fits')) as f: if not type(i) is int: data_S[d] = np.sqrt(f[i[0]].data[i[1],i[2]]) else: data_S[d] = f[i].data if i==0: header = f[i].header #from Kishimoto's pipeline : IQU_dir, IQU_shift, IQU_stat, IQU_trans #from my pipeline : raw_bg, raw_flat, raw_psf, raw_shift, raw_wav, IQU_dir # but errors from my pipeline are propagated all along, how to compare then ? plt.show()