#!/usr/bin/python3 #-*- coding:utf-8 -*- """ Main script where are progressively added the steps for the FOC pipeline reduction. """ #Project libraries import sys import numpy as np from copy import deepcopy import lib.fits as proj_fits #Functions to handle fits files import lib.reduction as proj_red #Functions used in reduction pipeline import lib.plots as proj_plots #Functions for plotting data from lib.convex_hull import image_hull from lib.deconvolve import from_file_psf import matplotlib.pyplot as plt from astropy.wcs import WCS ##### User inputs ## Input and output locations globals()['data_folder'] = "../data/NGC1068_x274020/" globals()['infiles'] = ['x274020at_c0f.fits','x274020bt_c0f.fits','x274020ct_c0f.fits', 'x274020dt_c0f.fits','x274020et_c0f.fits','x274020ft_c0f.fits', 'x274020gt_c0f.fits','x274020ht_c0f.fits','x274020it_c0f.fits'] #psf_file = 'NGC1068_f253m00.fits' globals()['plots_folder'] = "../plots/NGC1068_x274020/" globals()['data_folder'] = "../data/IC5063_x3nl030/" globals()['infiles'] = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits'] #psf_file = 'IC5063_f502m00.fits' globals()['plots_folder'] = "../plots/IC5063_x3nl030/" #globals()['data_folder'] = "../data/NGC1068_x14w010/" #globals()['infiles'] = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits', # 'x14w0104t_c0f.fits','x14w0105p_c0f.fits','x14w0106t_c0f.fits'] #globals()['plots_folder'] = "../plots/NGC1068_x14w010/" #globals()['data_folder'] = "../data/3C405_x136060/" #globals()['infiles'] = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits'] #globals()['plots_folder'] = "../plots/3C405_x136060/" #globals()['data_folder'] = "../data/CygnusA_x43w0/" #globals()['infiles'] = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits', # 'x43w0104r_c0f.fits', 'x43w0105r_c0f.fits', 'x43w0106r_c0f.fits', # 'x43w0107r_c0f.fits', 'x43w0108r_c0f.fits', 'x43w0109r_c0f.fits'] #F342W ##globals()['infiles'] = ['x43w0201r_c0f.fits', 'x43w0202r_c0f.fits', 'x43w0203r_c0f.fits', ## 'x43w0204r_c0f.fits', 'x43w0205r_c0f.fits', 'x43w0206r_c0f.fits'] #F275W #globals()['plots_folder'] = "../plots/CygnusA_x43w0/" #globals()['data_folder'] = "../data/3C109_x3mc010/" #globals()['infiles'] = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits'] #globals()['plots_folder'] = "../plots/3C109_x3mc010/" #globals()['data_folder'] = "../data/MKN463_x2rp030/" #globals()['infiles'] = ['x2rp0201t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0203t_c0f.fits', # 'x2rp0204t_c0f.fits', 'x2rp0205t_c0f.fits', 'x2rp0206t_c0f.fits', # 'x2rp0207t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0302t_c0f.fits', # 'x2rp0303t_c0f.fits', 'x2rp0304t_c0f.fits', 'x2rp0305t_c0f.fits', # 'x2rp0306t_c0f.fits', 'x2rp0307t_c0f.fits'] #globals()['plots_folder'] = "../plots/MKN463_x2rp030/" #globals()['data_folder'] = "../data/PG1630+377_x39510/" #globals()['infiles'] = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits', # 'x3995105r_c0f.fits', 'x3995109r_c0f.fits', 'x3995201r_c0f.fits', # 'x3995205r_c0f.fits', 'x3990202m_c0f.fits', 'x3990206m_c0f.fits', # 'x3995102r_c0f.fits', 'x3995106r_c0f.fits', 'x399510ar_c0f.fits', # 'x3995202r_c0f.fits','x3995206r_c0f.fits'] #globals()['plots_folder'] = "../plots/PG1630+377_x39510/" #globals()['data_folder'] = "../data/MKN3_x3nl010/" #globals()['infiles'] = ['x3nl0101r_c0f.fits','x3nl0102r_c0f.fits','x3nl0103r_c0f.fits'] #globals()['plots_folder'] = "../plots/MKN3_x3nl010/" #globals()['data_folder'] = "../data/MKN3_x3md010/" #globals()['infiles'] = ['x3md0101r_c0f.fits', 'x3md0102r_c0f.fits', 'x3md0103r_c0f.fits'] #F275W ##globals()['infiles'] = ['x3md0104r_c0f.fits', 'x3md0105r_c0f.fits', 'x3md0106r_c0f.fits'] #F342W #globals()['plots_folder'] = "../plots/MKN3_x3md010/" #globals()['data_folder'] = "../data/MKN78_x3nl020/" #globals()['infiles'] = ['x3nl0201r_c0f.fits','x3nl0202r_c0f.fits','x3nl0203r_c0f.fits'] #globals()['plots_folder'] = "../plots/MKN78_x3nl020/" #globals()['data_folder'] = "../data/MRK231_x4qr010/" #globals()['infiles'] = ['x4qr010ar_c0f.fits', 'x4qr010br_c0f.fits', 'x4qr010dr_c0f.fits', # 'x4qr010er_c0f.fits', 'x4qr010gr_c0f.fits', 'x4qr010hr_c0f.fits', # 'x4qr010jr_c0f.fits', 'x4qr010kr_c0f.fits', 'x4qr0104r_c0f.fits', # 'x4qr0105r_c0f.fits', 'x4qr0107r_c0f.fits', 'x4qr0108r_c0f.fits'] #globals()['plots_folder'] = "../plots/MRK231_x4qr010/" #globals()['data_folder'] = "../data/3C273_x0u20/" #globals()['infiles'] = ['x0u20101t_c0f.fits','x0u20102t_c0f.fits','x0u20103t_c0f.fits', # 'x0u20104t_c0f.fits','x0u20105t_c0f.fits','x0u20106t_c0f.fits', # 'x0u20201t_c0f.fits','x0u20202t_c0f.fits','x0u20203t_c0f.fits', # 'x0u20204t_c0f.fits','x0u20205t_c0f.fits','x0u20206t_c0f.fits', # 'x0u20301t_c0f.fits','x0u20302t_c0f.fits','x0u20303t_c0f.fits', # 'x0u20304t_c0f.fits','x0u20305t_c0f.fits','x0u20306t_c0f.fits'] #globals()['plots_folder'] = "../plots/3C273_x0u20/" #BEWARE: 5 observations separated by 1 year each (1995, 1996, 1997, 1998, 1999) #globals()['data_folder'] = "../data/M87/POS1/" ##globals()['infiles'] = ['x2py010ct_c0f.fits','x2py010dt_c0f.fits','x2py010et_c0f.fits','x2py010ft_c0f.fits'] #1995 ##globals()['infiles'] = ['x3be010ct_c0f.fits','x3be010dt_c0f.fits','x3be010et_c0f.fits','x3be010ft_c0f.fits'] #1996 ##globals()['infiles'] = ['x43r010km_c0f.fits','x43r010mm_c0f.fits','x43r010om_c0f.fits','x43r010rm_c0f.fits'] #1997 ##globals()['infiles'] = ['x43r110kr_c0f.fits','x43r110mr_c0f.fits','x43r110or_c0f.fits','x43r110rr_c0f.fits'] #1998 #globals()['infiles'] = ['x43r210kr_c0f.fits','x43r210mr_c0f.fits','x43r210or_c0f.fits','x43r210rr_c0f.fits'] #1999 #globals()['plots_folder'] = "../plots/M87/POS1/" #BEWARE: 5 observations separated by 1 year each (1995, 1996, 1997, 1998, 1999) #globals()['data_folder'] = "../data/M87/POS3/" ##globals()['infiles'] = ['x2py030at_c0f.fits','x2py030bt_c0f.fits','x2py030ct_c0f.fits','x2py0309t_c0f.fits'] #1995 ##globals()['infiles'] = ['x3be030at_c0f.fits','x3be030bt_c0f.fits','x3be030ct_c0f.fits','x3be0309t_c0f.fits'] #1996 ##globals()['infiles'] = ['x43r030em_c0f.fits','x43r030gm_c0f.fits','x43r030im_c0f.fits','x43r030lm_c0f.fits'] #1997 ##globals()['infiles'] = ['x43r130er_c0f.fits','x43r130fr_c0f.fits','x43r130ir_c0f.fits','x43r130lr_c0f.fits'] #1998 #globals()['infiles'] = ['x43r230er_c0f.fits','x43r230fr_c0f.fits','x43r230ir_c0f.fits','x43r230lr_c0f.fits'] #1999 #globals()['plots_folder'] = "../plots/M87/POS3/" def main(): ## Reduction parameters # Deconvolution deconvolve = False if deconvolve: psf = 'gaussian' #Can be user-defined as well #psf = from_file_psf(data_folder+psf_file) psf_FWHM = 0.15 psf_scale = 'arcsec' psf_shape=(25,25) iterations = 5 algo="richardson" # Initial crop display_crop = False # Error estimation error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15)) subtract_error = 1.25 display_error = True # Data binning rebin = True pxsize = 0.10 px_scale = 'arcsec' #pixel, arcsec or full rebin_operation = 'sum' #sum or average # Alignement align_center = 'image' #If None will align image to image center display_data = False # Smoothing smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine smoothing_FWHM = 0.20 #If None, no smoothing is done smoothing_scale = 'arcsec' #pixel or arcsec # Rotation rotate_stokes = True rotate_data = False #rotation to North convention can give erroneous results # Final crop crop = False #Crop to desired ROI final_display = True # Polarization map output figname = 'IC5063_FOC' #target/intrument name figtype = '_c_020' #additionnal informations SNRp_cut = 3. #P measurments with SNR>3 SNRi_cut = 30. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%. step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted # if step_vec = 0 then all vectors are displayed at full length ##### Pipeline start ## Step 1: # Get data from fits files and translate to flux in erg/cm²/s/Angstrom. data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True) # Crop data to remove outside blank margins. data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder) # Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM. if deconvolve: data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo) # Estimate error from data background, estimated from sub-image of desired sub_shape. background = None data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, subtract_error=subtract_error, display=display_error, savename=figname+"_errors", plots_folder=plots_folder, return_background=True) # Align and rescale images with oversampling. data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, background=background, upsample_factor=10, ref_center=align_center, return_shifts=False) # Rebin data to desired pixel size. if rebin: data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask) # Rotate data to have North up if rotate_data: data_mask = np.ones(data_array.shape[1:]).astype(bool) alpha = headers[0]['orientat'] data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -alpha) #Plot array for checking output if display_data and px_scale.lower() not in ['full','integrate']: vertex = image_hull(data_mask,step=5,null_val=0.,inside=True) shape = np.array([vertex[1]-vertex[0],vertex[3]-vertex[2]]) rectangle = [vertex[2], vertex[0], shape[1], shape[0], 0., 'g'] proj_plots.plot_obs(data_array, headers, vmin=data_array[data_array>0.].min(), vmax=data_array[data_array>0.].max(), rectangle =[rectangle,]*data_array.shape[0], savename=figname+"_center_"+align_center, plots_folder=plots_folder) background = np.array([np.array(bkg).reshape(1,1) for bkg in background]) background_error = np.array([np.array(np.sqrt((bkg-background[np.array([h['filtnam1']==head['filtnam1'] for h in headers],dtype=bool)].mean())**2/np.sum([h['filtnam1']==head['filtnam1'] for h in headers]))).reshape(1,1) for bkg,head in zip(background,headers)]) ## Step 2: # Compute Stokes I, Q, U with smoothed polarized images # SMOOTHING DISCUSSION : # FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide # see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2 # Bibcode : 1995chst.conf...10J I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function,transmitcorr=False) I_bkg, Q_bkg, U_bkg, S_cov_bkg = proj_red.compute_Stokes(background, background_error, np.array(True).reshape(1,1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function,transmitcorr=False) ## Step 3: # Rotate images to have North up if rotate_stokes: I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, SNRi_cut=None) I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1,1), headers, SNRi_cut=None) # Compute polarimetric parameters (polarization degree and angle). P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers) P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, headers) ## Step 4: # Save image to FITS. Stokes_test = proj_fits.save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, figname+figtype, data_folder=data_folder, return_hdul=True) data_mask = Stokes_test[-1].data.astype(bool) ## Step 5: # crop to desired region of interest (roi) if crop: figtype += "_crop" stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_test)) stokescrop.crop() stokescrop.writeto(data_folder+figname+figtype+".fits") Stokes_test, data_mask = stokescrop.hdul_crop, stokescrop.data_mask print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'],*proj_plots.sci_not(Stokes_test[0].data[data_mask].sum()*headers[0]['photflam'],np.sqrt(Stokes_test[3].data[0,0][data_mask].sum())*headers[0]['photflam'],2,out=int))) print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]['p_int']*100.,np.ceil(headers[0]['p_int_err']*1000.)/10.)) print("PA_int = {0:.1f} ± {1:.1f} °".format(headers[0]['pa_int'],np.ceil(headers[0]['pa_int_err']*10.)/10.)) # Background values print("F_bkg({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'],*proj_plots.sci_not(I_bkg[0,0]*headers[0]['photflam'],np.sqrt(S_cov_bkg[0,0][0,0])*headers[0]['photflam'],2,out=int))) print("P_bkg = {0:.1f} ± {1:.1f} %".format(debiased_P_bkg[0,0]*100.,np.ceil(s_P_bkg[0,0]*1000.)/10.)) print("PA_bkg = {0:.1f} ± {1:.1f} °".format(PA_bkg[0,0],np.ceil(s_PA_bkg[0,0]*10.)/10.)) # Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error). if px_scale.lower() not in ['full','integrate'] and final_display: proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder) proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_I", plots_folder=plots_folder, display='Intensity') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_flux", plots_folder=plots_folder, display='Pol_Flux') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_PA", plots_folder=plots_folder, display='Pol_ang') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_I_err", plots_folder=plots_folder, display='I_err') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRi", plots_folder=plots_folder, display='SNRi') proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRp", plots_folder=plots_folder, display='SNRp') elif final_display: proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display='integrate') elif px_scale.lower() not in ['full', 'integrate']: pol_map = proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut) return 0 if __name__ == "__main__": sys.exit(main())