Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| e9fd50ad17 | |||
| 3ac9102445 | |||
| 0a8336aea8 | |||
| f4fdce3f07 |
@@ -40,13 +40,13 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
display_crop = False
|
display_crop = False
|
||||||
|
|
||||||
# Background estimation
|
# Background estimation
|
||||||
error_sub_type = "scott" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||||
subtract_error = 0.50
|
subtract_error = 1.33
|
||||||
display_bkg = True
|
display_bkg = True
|
||||||
|
|
||||||
# Data binning
|
# Data binning
|
||||||
pxsize = 4
|
pxsize = 0.05
|
||||||
pxscale = "px" # pixel, arcsec or full
|
pxscale = "arcsec" # pixel, arcsec or full
|
||||||
rebin_operation = "sum" # sum or average
|
rebin_operation = "sum" # sum or average
|
||||||
|
|
||||||
# Alignement
|
# Alignement
|
||||||
@@ -59,8 +59,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||||
smoothing_FWHM = 1.5 # If None, no smoothing is done
|
smoothing_FWHM = 0.075 # If None, no smoothing is done
|
||||||
smoothing_scale = "px" # pixel or arcsec
|
smoothing_scale = "arcsec" # pixel or arcsec
|
||||||
|
|
||||||
# Rotation
|
# Rotation
|
||||||
rotate_North = True
|
rotate_North = True
|
||||||
@@ -216,28 +216,26 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||||
# Bibcode : 1995chst.conf...10J
|
# Bibcode : 1995chst.conf...10J
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_stat = proj_red.compute_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes = proj_red.compute_Stokes(
|
||||||
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
|
||||||
)
|
)
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg, s_IQU_stat_bkg = proj_red.compute_Stokes(
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, header_bkg = proj_red.compute_Stokes(
|
||||||
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
|
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
|
||||||
)
|
)
|
||||||
|
|
||||||
# Step 3:
|
# Step 3:
|
||||||
# Rotate images to have North up
|
# Rotate images to have North up
|
||||||
if rotate_North:
|
if rotate_North:
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat = proj_red.rotate_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=s_IQU_stat, SNRi_cut=None
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes, SNRi_cut=None
|
||||||
)
|
)
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg, s_IQU_stat_bkg = proj_red.rotate_Stokes(
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, s_IQU_stat=s_IQU_stat_bkg, SNRi_cut=None
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
|
||||||
)
|
)
|
||||||
|
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_stat=s_IQU_stat)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes)
|
||||||
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(
|
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, S_stat_cov_bkg, header_bkg)
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg, s_IQU_stat=s_IQU_stat_bkg
|
|
||||||
)
|
|
||||||
|
|
||||||
# Step 4:
|
# Step 4:
|
||||||
# Save image to FITS.
|
# Save image to FITS.
|
||||||
@@ -247,6 +245,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
Q_stokes,
|
Q_stokes,
|
||||||
U_stokes,
|
U_stokes,
|
||||||
Stokes_cov,
|
Stokes_cov,
|
||||||
|
Stokes_stat_cov,
|
||||||
P,
|
P,
|
||||||
debiased_P,
|
debiased_P,
|
||||||
s_P,
|
s_P,
|
||||||
|
|||||||
@@ -106,7 +106,23 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
|||||||
|
|
||||||
|
|
||||||
def save_Stokes(
|
def save_Stokes(
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, header_stokes, data_mask, filename, data_folder="", return_hdul=False
|
I_stokes,
|
||||||
|
Q_stokes,
|
||||||
|
U_stokes,
|
||||||
|
Stokes_cov,
|
||||||
|
Stokes_stat_cov,
|
||||||
|
P,
|
||||||
|
debiased_P,
|
||||||
|
s_P,
|
||||||
|
s_P_P,
|
||||||
|
PA,
|
||||||
|
s_PA,
|
||||||
|
s_PA_P,
|
||||||
|
header_stokes,
|
||||||
|
data_mask,
|
||||||
|
filename,
|
||||||
|
data_folder="",
|
||||||
|
return_hdul=False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Save computed polarimetry parameters to a single fits file,
|
Save computed polarimetry parameters to a single fits file,
|
||||||
@@ -186,11 +202,15 @@ def save_Stokes(
|
|||||||
s_PA_P = s_PA_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
s_PA_P = s_PA_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||||
|
|
||||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
|
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
|
||||||
|
new_Stokes_stat_cov = np.zeros((*Stokes_stat_cov.shape[:-2], *shape[::-1]))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
Stokes_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
|
Stokes_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
|
||||||
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||||
|
Stokes_stat_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
|
||||||
|
new_Stokes_stat_cov[i, j] = Stokes_stat_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||||
Stokes_cov = new_Stokes_cov
|
Stokes_cov = new_Stokes_cov
|
||||||
|
Stokes_stat_cov = new_Stokes_stat_cov
|
||||||
|
|
||||||
data_mask = data_mask[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
data_mask = data_mask[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||||
data_mask = data_mask.astype(float, copy=False)
|
data_mask = data_mask.astype(float, copy=False)
|
||||||
@@ -210,6 +230,7 @@ def save_Stokes(
|
|||||||
[Q_stokes, "Q_stokes"],
|
[Q_stokes, "Q_stokes"],
|
||||||
[U_stokes, "U_stokes"],
|
[U_stokes, "U_stokes"],
|
||||||
[Stokes_cov, "IQU_cov_matrix"],
|
[Stokes_cov, "IQU_cov_matrix"],
|
||||||
|
[Stokes_stat_cov, "IQU_stat_cov_matrix"],
|
||||||
[P, "Pol_deg"],
|
[P, "Pol_deg"],
|
||||||
[debiased_P, "Pol_deg_debiased"],
|
[debiased_P, "Pol_deg_debiased"],
|
||||||
[s_P, "Pol_deg_err"],
|
[s_P, "Pol_deg_err"],
|
||||||
@@ -221,7 +242,7 @@ def save_Stokes(
|
|||||||
]:
|
]:
|
||||||
hdu_header = header.copy()
|
hdu_header = header.copy()
|
||||||
hdu_header["datatype"] = name
|
hdu_header["datatype"] = name
|
||||||
if not name == "IQU_cov_matrix":
|
if not name[-10:] == "cov_matrix":
|
||||||
data[(1 - data_mask).astype(bool)] = 0.0
|
data[(1 - data_mask).astype(bool)] = 0.0
|
||||||
hdu = fits.ImageHDU(data=data, header=hdu_header)
|
hdu = fits.ImageHDU(data=data, header=hdu_header)
|
||||||
hdu.name = name
|
hdu.name = name
|
||||||
|
|||||||
@@ -360,7 +360,7 @@ def polarization_map(
|
|||||||
if fig is None:
|
if fig is None:
|
||||||
ratiox = max(int(stkI.shape[1] / (stkI.shape[0])), 1)
|
ratiox = max(int(stkI.shape[1] / (stkI.shape[0])), 1)
|
||||||
ratioy = max(int((stkI.shape[0]) / stkI.shape[1]), 1)
|
ratioy = max(int((stkI.shape[0]) / stkI.shape[1]), 1)
|
||||||
fig = plt.figure(figsize=(7 * ratiox, 7 * ratioy), layout="constrained")
|
fig = plt.figure(figsize=(8 * ratiox, 8 * ratioy), layout="constrained")
|
||||||
if ax is None:
|
if ax is None:
|
||||||
ax = fig.add_subplot(111, projection=wcs)
|
ax = fig.add_subplot(111, projection=wcs)
|
||||||
ax.set(aspect="equal", fc="k") # , ylim=[-0.05 * stkI.shape[0], 1.05 * stkI.shape[0]])
|
ax.set(aspect="equal", fc="k") # , ylim=[-0.05 * stkI.shape[0], 1.05 * stkI.shape[0]])
|
||||||
@@ -435,33 +435,33 @@ def polarization_map(
|
|||||||
else:
|
else:
|
||||||
vmin, vmax = 1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stkI > 0.0]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
|
vmin, vmax = 1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stkI > 0.0]) * convert_flux), np.max(stkI[stkI > 0.0] * convert_flux)
|
||||||
pfmax = (stkI[stkI > 0.0] * pol[stkI > 0.0] * convert_flux).max()
|
pfmax = (stkI[stkI > 0.0] * pol[stkI > 0.0] * convert_flux).max()
|
||||||
im = ax.imshow(stkI * convert_flux * pol, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(stkI * convert_flux * pol, norm=LogNorm(vmin, vmax), aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
# levelsPf = np.linspace(0.0.60, 0.50, 5) * pfmax
|
# levelsPf = np.linspace(0.0.60, 0.50, 5) * pfmax
|
||||||
levelsPf = np.array([1.73, 13.0, 33.0, 66.0]) / 100.0 * pfmax
|
levelsPf = np.array([13.0, 33.0, 66.0]) / 100.0 * pfmax
|
||||||
print("Polarized flux density contour levels : ", levelsPf)
|
print("Polarized flux density contour levels : ", levelsPf)
|
||||||
ax.contour(stkI * convert_flux * pol, levels=levelsPf, colors="grey", linewidths=0.5)
|
ax.contour(stkI * convert_flux * pol, levels=levelsPf, colors="grey", linewidths=0.5)
|
||||||
elif display.lower() in ["p", "pol", "pol_deg"]:
|
elif display.lower() in ["p", "pol", "pol_deg"]:
|
||||||
# Display polarization degree map
|
# Display polarization degree map
|
||||||
display = "p"
|
display = "p"
|
||||||
vmin, vmax = 0.0, min(pol[np.isfinite(pol)].max(), 1.0) * 100.0
|
vmin, vmax = 0.0, min(pol[pol > pol_err].max(), 1.0) * 100.0
|
||||||
im = ax.imshow(pol * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(pol * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P$ [%]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P$ [%]")
|
||||||
elif display.lower() in ["pa", "pang", "pol_ang"]:
|
elif display.lower() in ["pa", "pang", "pol_ang"]:
|
||||||
# Display polarization degree map
|
# Display polarization degree map
|
||||||
display = "pa"
|
display = "pa"
|
||||||
vmin, vmax = 0.0, 180.0
|
vmin, vmax = 0.0, 180.0
|
||||||
im = ax.imshow(princ_angle(pang), vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(princ_angle(pang), vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\theta_P$ [°]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\theta_P$ [°]")
|
||||||
elif display.lower() in ["s_p", "pol_err", "pol_deg_err"]:
|
elif display.lower() in ["s_p", "pol_err", "pol_deg_err"]:
|
||||||
# Display polarization degree error map
|
# Display polarization degree error map
|
||||||
display = "s_p"
|
display = "s_p"
|
||||||
if (SNRp > P_cut).any():
|
if (SNRp > P_cut).any():
|
||||||
vmin, vmax = 0.0, np.max([pol_err[SNRp > P_cut].max(), 1.0]) * 100.0
|
vmin, vmax = 0.0, np.max([pol_err[SNRp > P_cut].max(), 1.0]) * 100.0
|
||||||
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0)
|
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
else:
|
else:
|
||||||
vmin, vmax = 0.0, 100.0
|
vmin, vmax = 0.0, 100.0
|
||||||
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0)
|
im = ax.imshow(pol_err * 100.0, vmin=vmin, vmax=vmax, aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_P$ [%]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_P$ [%]")
|
||||||
elif display.lower() in ["s_i", "i_err"]:
|
elif display.lower() in ["s_i", "i_err"]:
|
||||||
# Display intensity error map
|
# Display intensity error map
|
||||||
@@ -471,39 +471,41 @@ def polarization_map(
|
|||||||
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
1.0 / 2.0 * np.median(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
||||||
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
np.max(np.sqrt(stk_cov[0, 0][stk_cov[0, 0] > 0.0]) * convert_flux),
|
||||||
)
|
)
|
||||||
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0)
|
im = ax.imshow(
|
||||||
|
np.sqrt(stk_cov[0, 0]) * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno_r", alpha=1.0 - 0.75 * (pol < pol_err)
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(np.sqrt(stk_cov[0, 0]) * convert_flux, aspect="equal", cmap=kwargs["cmap"], alpha=1.0 - 0.75 * (pol < pol_err))
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
elif display.lower() in ["snri"]:
|
elif display.lower() in ["snri"]:
|
||||||
# Display I_stokes signal-to-noise map
|
# Display I_stokes signal-to-noise map
|
||||||
display = "snri"
|
display = "snri"
|
||||||
vmin, vmax = 0.0, np.max(SNRi[np.isfinite(SNRi)])
|
vmin, vmax = 0.0, np.max(SNRi[np.isfinite(SNRi)])
|
||||||
if vmax * 0.99 > SNRi_cut:
|
if vmax * 0.99 > SNRi_cut + 3:
|
||||||
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
|
||||||
levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 5).astype(int)
|
levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 3).astype(int)
|
||||||
print("SNRi contour levels : ", levelsSNRi)
|
print("SNRi contour levels : ", levelsSNRi)
|
||||||
ax.contour(SNRi, levels=levelsSNRi, colors="grey", linewidths=0.5)
|
ax.contour(SNRi, levels=levelsSNRi, colors="grey", linewidths=0.5)
|
||||||
else:
|
else:
|
||||||
im = ax.imshow(SNRi, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(SNRi, aspect="equal", cmap=kwargs["cmap"])
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$I_{Stokes}/\sigma_{I}$")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$I_{Stokes}/\sigma_{I}$")
|
||||||
elif display.lower() in ["snr", "snrp"]:
|
elif display.lower() in ["snr", "snrp"]:
|
||||||
# Display polarization degree signal-to-noise map
|
# Display polarization degree signal-to-noise map
|
||||||
display = "snrp"
|
display = "snrp"
|
||||||
vmin, vmax = 0.0, np.max(SNRp[np.isfinite(SNRp)])
|
vmin, vmax = 0.0, np.max(SNRp[np.isfinite(SNRp)])
|
||||||
if vmax * 0.99 > SNRp_cut:
|
if vmax * 0.99 > SNRp_cut + 3:
|
||||||
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
|
||||||
levelsSNRp = np.linspace(P_cut, vmax * 0.99, 5).astype(int)
|
levelsSNRp = np.linspace(SNRp_cut, vmax * 0.99, 3).astype(int)
|
||||||
print("SNRp contour levels : ", levelsSNRp)
|
print("SNRp contour levels : ", levelsSNRp)
|
||||||
ax.contour(SNRp, levels=levelsSNRp, colors="grey", linewidths=0.5)
|
ax.contour(SNRp, levels=levelsSNRp, colors="grey", linewidths=0.5)
|
||||||
else:
|
else:
|
||||||
im = ax.imshow(SNRp, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(SNRp, aspect="equal", cmap=kwargs["cmap"])
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P/\sigma_{P}$")
|
fig.colorbar(im, ax=ax, aspect=50, shrink=0.60, pad=0.025, label=r"$P/\sigma_{P}$")
|
||||||
elif display.lower() in ["conf", "confp"]:
|
elif display.lower() in ["conf", "confp"]:
|
||||||
# Display polarization degree signal-to-noise map
|
# Display polarization degree signal-to-noise map
|
||||||
display = "confp"
|
display = "confp"
|
||||||
vmin, vmax = 0.0, 1.0
|
vmin, vmax = 0.0, 1.0
|
||||||
im = ax.imshow(confP, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"], alpha=1.0)
|
im = ax.imshow(confP, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"])
|
||||||
levelsconfp = np.array([0.500, 0.900, 0.990, 0.999])
|
levelsconfp = np.array([0.500, 0.900, 0.990, 0.999])
|
||||||
print("confp contour levels : ", levelsconfp)
|
print("confp contour levels : ", levelsconfp)
|
||||||
ax.contour(confP, levels=levelsconfp, colors="grey", linewidths=0.5)
|
ax.contour(confP, levels=levelsconfp, colors="grey", linewidths=0.5)
|
||||||
@@ -1895,7 +1897,7 @@ class crop_map(object):
|
|||||||
else:
|
else:
|
||||||
self.ax = ax
|
self.ax = ax
|
||||||
self.mask_alpha = 0.75
|
self.mask_alpha = 0.75
|
||||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
|
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
|
||||||
self.embedded = True
|
self.embedded = True
|
||||||
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)")
|
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)")
|
||||||
self.display(self.data, self.wcs, self.map_convert, **self.kwargs)
|
self.display(self.data, self.wcs, self.map_convert, **self.kwargs)
|
||||||
@@ -1956,7 +1958,7 @@ class crop_map(object):
|
|||||||
self.display()
|
self.display()
|
||||||
|
|
||||||
if self.fig.canvas.manager.toolbar.mode == "":
|
if self.fig.canvas.manager.toolbar.mode == "":
|
||||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
|
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
|
||||||
|
|
||||||
self.RSextent = deepcopy(self.extent)
|
self.RSextent = deepcopy(self.extent)
|
||||||
self.RScenter = deepcopy(self.center)
|
self.RScenter = deepcopy(self.center)
|
||||||
@@ -2016,7 +2018,7 @@ class crop_map(object):
|
|||||||
self.ax.set_ylim(0, ylim)
|
self.ax.set_ylim(0, ylim)
|
||||||
|
|
||||||
if self.fig.canvas.manager.toolbar.mode == "":
|
if self.fig.canvas.manager.toolbar.mode == "":
|
||||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
|
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
|
||||||
|
|
||||||
self.fig.canvas.draw_idle()
|
self.fig.canvas.draw_idle()
|
||||||
|
|
||||||
@@ -2028,7 +2030,7 @@ class crop_map(object):
|
|||||||
|
|
||||||
def crop(self) -> None:
|
def crop(self) -> None:
|
||||||
if self.fig.canvas.manager.toolbar.mode == "":
|
if self.fig.canvas.manager.toolbar.mode == "":
|
||||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
|
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
|
||||||
self.bapply.on_clicked(self.apply_crop)
|
self.bapply.on_clicked(self.apply_crop)
|
||||||
self.breset.on_clicked(self.reset_crop)
|
self.breset.on_clicked(self.reset_crop)
|
||||||
self.fig.canvas.mpl_connect("close_event", self.on_close)
|
self.fig.canvas.mpl_connect("close_event", self.on_close)
|
||||||
@@ -2077,7 +2079,7 @@ class crop_Stokes(crop_map):
|
|||||||
|
|
||||||
# Crop dataset
|
# Crop dataset
|
||||||
for dataset in self.hdul_crop:
|
for dataset in self.hdul_crop:
|
||||||
if dataset.header["datatype"] == "IQU_cov_matrix":
|
if dataset.header["datatype"][-10:] == "cov_matrix":
|
||||||
stokes_cov = np.zeros((3, 3, shape[1], shape[0]))
|
stokes_cov = np.zeros((3, 3, shape[1], shape[0]))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
@@ -2100,18 +2102,24 @@ class crop_Stokes(crop_map):
|
|||||||
self.on_close(event)
|
self.on_close(event)
|
||||||
|
|
||||||
if self.fig.canvas.manager.toolbar.mode == "":
|
if self.fig.canvas.manager.toolbar.mode == "":
|
||||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1])
|
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop, button=[1], spancoords="pixels", useblit=True)
|
||||||
# Update integrated values
|
# Update integrated values
|
||||||
mask = np.logical_and(self.hdul_crop["data_mask"].data.astype(bool), self.hdul_crop[0].data > 0)
|
mask = np.logical_and(self.hdul_crop["DATA_MASK"].data.astype(bool), self.hdul_crop[0].data > 0)
|
||||||
I_diluted = self.hdul_crop["i_stokes"].data[mask].sum()
|
I_diluted = self.hdul_crop["I_STOKES"].data[mask].sum()
|
||||||
Q_diluted = self.hdul_crop["q_stokes"].data[mask].sum()
|
Q_diluted = self.hdul_crop["Q_STOKES"].data[mask].sum()
|
||||||
U_diluted = self.hdul_crop["u_stokes"].data[mask].sum()
|
U_diluted = self.hdul_crop["U_STOKES"].data[mask].sum()
|
||||||
I_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 0][mask]))
|
I_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 0][mask]))
|
||||||
Q_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[1, 1][mask]))
|
Q_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[1, 1][mask]))
|
||||||
U_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[2, 2][mask]))
|
U_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[2, 2][mask]))
|
||||||
IQ_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 1][mask] ** 2))
|
IQ_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 1][mask] ** 2))
|
||||||
IU_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[0, 2][mask] ** 2))
|
IU_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[0, 2][mask] ** 2))
|
||||||
QU_diluted_err = np.sqrt(np.sum(self.hdul_crop["iqu_cov_matrix"].data[1, 2][mask] ** 2))
|
QU_diluted_err = np.sqrt(np.sum(self.hdul_crop["IQU_COV_MATRIX"].data[1, 2][mask] ** 2))
|
||||||
|
I_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 0][mask]))
|
||||||
|
Q_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[1, 1][mask]))
|
||||||
|
U_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[2, 2][mask]))
|
||||||
|
IQ_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 1][mask] ** 2))
|
||||||
|
IU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[0, 2][mask] ** 2))
|
||||||
|
QU_diluted_stat_err = np.sqrt(np.sum(self.hdul_crop["IQU_STAT_COV_MATRIX"].data[1, 2][mask] ** 2))
|
||||||
|
|
||||||
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
||||||
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
||||||
@@ -2120,6 +2128,18 @@ class crop_Stokes(crop_map):
|
|||||||
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
||||||
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
||||||
)
|
)
|
||||||
|
P_diluted_stat_err = (
|
||||||
|
P_diluted
|
||||||
|
/ I_diluted
|
||||||
|
* np.sqrt(
|
||||||
|
I_diluted_stat_err
|
||||||
|
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
|
||||||
|
+ 1.0
|
||||||
|
/ (I_diluted**2 * P_diluted**4)
|
||||||
|
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
||||||
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
||||||
@@ -2129,7 +2149,7 @@ class crop_Stokes(crop_map):
|
|||||||
for dataset in self.hdul_crop:
|
for dataset in self.hdul_crop:
|
||||||
if dataset.header["FILENAME"][-4:] != "crop":
|
if dataset.header["FILENAME"][-4:] != "crop":
|
||||||
dataset.header["FILENAME"] += "_crop"
|
dataset.header["FILENAME"] += "_crop"
|
||||||
dataset.header["P_int"] = (P_diluted, "Integrated polarization degree")
|
dataset.header["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
|
||||||
dataset.header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
dataset.header["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||||
dataset.header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
dataset.header["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||||
dataset.header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
dataset.header["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||||
@@ -2959,6 +2979,10 @@ class pol_map(object):
|
|||||||
def IQU_cov(self):
|
def IQU_cov(self):
|
||||||
return self.Stokes["IQU_COV_MATRIX"].data
|
return self.Stokes["IQU_COV_MATRIX"].data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def IQU_stat_cov(self):
|
||||||
|
return self.Stokes["IQU_STAT_COV_MATRIX"].data
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def P(self):
|
def P(self):
|
||||||
return self.Stokes["POL_DEG_DEBIASED"].data
|
return self.Stokes["POL_DEG_DEBIASED"].data
|
||||||
@@ -3079,7 +3103,7 @@ class pol_map(object):
|
|||||||
label = r"$P \cdot F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
|
label = r"$P \cdot F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
|
||||||
elif self.display_selection.lower() in ["pol_deg"]:
|
elif self.display_selection.lower() in ["pol_deg"]:
|
||||||
self.data = self.P * 100.0
|
self.data = self.P * 100.0
|
||||||
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.P > self.P_ERR])
|
kwargs["vmin"], kwargs["vmax"] = 0.0, min(np.max(self.data[self.P > self.P_ERR]), 100.0)
|
||||||
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
|
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
|
||||||
label = r"$P$ [%]"
|
label = r"$P$ [%]"
|
||||||
elif self.display_selection.lower() in ["pol_ang"]:
|
elif self.display_selection.lower() in ["pol_ang"]:
|
||||||
@@ -3092,14 +3116,12 @@ class pol_map(object):
|
|||||||
SNRi = np.zeros(self.I.shape)
|
SNRi = np.zeros(self.I.shape)
|
||||||
SNRi[s_I > 0.0] = self.I[s_I > 0.0] / s_I[s_I > 0.0]
|
SNRi[s_I > 0.0] = self.I[s_I > 0.0] / s_I[s_I > 0.0]
|
||||||
self.data = SNRi
|
self.data = SNRi
|
||||||
kwargs["alpha"] = 1.0 - 0.75 * (self.I < s_I)
|
|
||||||
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.data > 0.0])
|
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.data > 0.0])
|
||||||
label = r"$I_{Stokes}/\sigma_{I}$"
|
label = r"$I_{Stokes}/\sigma_{I}$"
|
||||||
elif self.display_selection.lower() in ["snrp"]:
|
elif self.display_selection.lower() in ["snrp"]:
|
||||||
SNRp = np.zeros(self.P.shape)
|
SNRp = np.zeros(self.P.shape)
|
||||||
SNRp[self.P_ERR > 0.0] = self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0]
|
SNRp[self.P_ERR > 0.0] = self.P[self.P_ERR > 0.0] / self.P_ERR[self.P_ERR > 0.0]
|
||||||
self.data = SNRp
|
self.data = SNRp
|
||||||
kwargs["alpha"] = 1.0 - 0.75 * (self.P < self.P_ERR)
|
|
||||||
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.data > 0.0])
|
kwargs["vmin"], kwargs["vmax"] = 0.0, np.max(self.data[self.data > 0.0])
|
||||||
label = r"$P/\sigma_{P}$"
|
label = r"$P/\sigma_{P}$"
|
||||||
|
|
||||||
@@ -3283,27 +3305,26 @@ class pol_map(object):
|
|||||||
s_I = np.sqrt(self.IQU_cov[0, 0])
|
s_I = np.sqrt(self.IQU_cov[0, 0])
|
||||||
I_reg = self.I.sum()
|
I_reg = self.I.sum()
|
||||||
I_reg_err = np.sqrt(np.sum(s_I**2))
|
I_reg_err = np.sqrt(np.sum(s_I**2))
|
||||||
P_reg = self.Stokes[0].header["P_int"]
|
debiased_P_reg = self.Stokes[0].header["P_int"]
|
||||||
P_reg_err = self.Stokes[0].header["sP_int"]
|
P_reg_err = self.Stokes[0].header["sP_int"]
|
||||||
PA_reg = self.Stokes[0].header["PA_int"]
|
PA_reg = self.Stokes[0].header["PA_int"]
|
||||||
PA_reg_err = self.Stokes[0].header["sPA_int"]
|
PA_reg_err = self.Stokes[0].header["sPA_int"]
|
||||||
|
|
||||||
s_I = np.sqrt(self.IQU_cov[0, 0])
|
|
||||||
s_Q = np.sqrt(self.IQU_cov[1, 1])
|
|
||||||
s_U = np.sqrt(self.IQU_cov[2, 2])
|
|
||||||
s_IQ = self.IQU_cov[0, 1]
|
|
||||||
s_IU = self.IQU_cov[0, 2]
|
|
||||||
s_QU = self.IQU_cov[1, 2]
|
|
||||||
|
|
||||||
I_cut = self.I[self.cut].sum()
|
I_cut = self.I[self.cut].sum()
|
||||||
Q_cut = self.Q[self.cut].sum()
|
Q_cut = self.Q[self.cut].sum()
|
||||||
U_cut = self.U[self.cut].sum()
|
U_cut = self.U[self.cut].sum()
|
||||||
I_cut_err = np.sqrt(np.sum(s_I[self.cut] ** 2))
|
I_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 0][self.cut]))
|
||||||
Q_cut_err = np.sqrt(np.sum(s_Q[self.cut] ** 2))
|
Q_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 1][self.cut]))
|
||||||
U_cut_err = np.sqrt(np.sum(s_U[self.cut] ** 2))
|
U_cut_err = np.sqrt(np.sum(self.IQU_cov[2, 2][self.cut]))
|
||||||
IQ_cut_err = np.sqrt(np.sum(s_IQ[self.cut] ** 2))
|
IQ_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 1][self.cut] ** 2))
|
||||||
IU_cut_err = np.sqrt(np.sum(s_IU[self.cut] ** 2))
|
IU_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 2][self.cut] ** 2))
|
||||||
QU_cut_err = np.sqrt(np.sum(s_QU[self.cut] ** 2))
|
QU_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 2][self.cut] ** 2))
|
||||||
|
I_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][self.cut]))
|
||||||
|
Q_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][self.cut]))
|
||||||
|
U_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][self.cut]))
|
||||||
|
IQ_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][self.cut] ** 2))
|
||||||
|
IU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][self.cut] ** 2))
|
||||||
|
QU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][self.cut] ** 2))
|
||||||
|
|
||||||
with np.errstate(divide="ignore", invalid="ignore"):
|
with np.errstate(divide="ignore", invalid="ignore"):
|
||||||
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
|
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
|
||||||
@@ -3316,6 +3337,16 @@ class pol_map(object):
|
|||||||
)
|
)
|
||||||
/ I_cut
|
/ I_cut
|
||||||
)
|
)
|
||||||
|
P_cut_stat_err = (
|
||||||
|
P_cut
|
||||||
|
/ I_cut
|
||||||
|
* np.sqrt(
|
||||||
|
I_cut_stat_err
|
||||||
|
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
|
||||||
|
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
|
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
|
||||||
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
|
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
|
||||||
@@ -3323,22 +3354,21 @@ class pol_map(object):
|
|||||||
)
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
s_I = np.sqrt(self.IQU_cov[0, 0])
|
|
||||||
s_Q = np.sqrt(self.IQU_cov[1, 1])
|
|
||||||
s_U = np.sqrt(self.IQU_cov[2, 2])
|
|
||||||
s_IQ = self.IQU_cov[0, 1]
|
|
||||||
s_IU = self.IQU_cov[0, 2]
|
|
||||||
s_QU = self.IQU_cov[1, 2]
|
|
||||||
|
|
||||||
I_reg = self.I[self.region].sum()
|
I_reg = self.I[self.region].sum()
|
||||||
Q_reg = self.Q[self.region].sum()
|
Q_reg = self.Q[self.region].sum()
|
||||||
U_reg = self.U[self.region].sum()
|
U_reg = self.U[self.region].sum()
|
||||||
I_reg_err = np.sqrt(np.sum(s_I[self.region] ** 2))
|
I_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 0][self.region]))
|
||||||
Q_reg_err = np.sqrt(np.sum(s_Q[self.region] ** 2))
|
Q_reg_err = np.sqrt(np.sum(self.IQU_cov[1, 1][self.region]))
|
||||||
U_reg_err = np.sqrt(np.sum(s_U[self.region] ** 2))
|
U_reg_err = np.sqrt(np.sum(self.IQU_cov[2, 2][self.region]))
|
||||||
IQ_reg_err = np.sqrt(np.sum(s_IQ[self.region] ** 2))
|
IQ_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 1][self.region] ** 2))
|
||||||
IU_reg_err = np.sqrt(np.sum(s_IU[self.region] ** 2))
|
IU_reg_err = np.sqrt(np.sum(self.IQU_cov[0, 2][self.region] ** 2))
|
||||||
QU_reg_err = np.sqrt(np.sum(s_QU[self.region] ** 2))
|
QU_reg_err = np.sqrt(np.sum(self.IQU_cov[1, 2][self.region] ** 2))
|
||||||
|
I_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][self.region]))
|
||||||
|
Q_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][self.region]))
|
||||||
|
U_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][self.region]))
|
||||||
|
IQ_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][self.region] ** 2))
|
||||||
|
IU_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][self.region] ** 2))
|
||||||
|
QU_reg_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][self.region] ** 2))
|
||||||
|
|
||||||
conf = PCconf(QN=Q_reg / I_reg, QN_ERR=Q_reg_err / I_reg, UN=U_reg / I_reg, UN_ERR=U_reg_err / I_reg)
|
conf = PCconf(QN=Q_reg / I_reg, QN_ERR=Q_reg_err / I_reg, UN=U_reg / I_reg, UN_ERR=U_reg_err / I_reg)
|
||||||
if 1.0 - conf > 1e-3:
|
if 1.0 - conf > 1e-3:
|
||||||
@@ -3355,6 +3385,16 @@ class pol_map(object):
|
|||||||
)
|
)
|
||||||
/ I_reg
|
/ I_reg
|
||||||
)
|
)
|
||||||
|
P_reg_stat_err = (
|
||||||
|
P_reg
|
||||||
|
/ I_reg
|
||||||
|
* np.sqrt(
|
||||||
|
I_reg_stat_err
|
||||||
|
- 2.0 / (I_reg * P_reg**2) * (Q_reg * IQ_reg_stat_err + U_reg * IU_reg_stat_err)
|
||||||
|
+ 1.0 / (I_reg**2 * P_reg**4) * (Q_reg**2 * Q_reg_stat_err + U_reg**2 * U_reg_stat_err + 2.0 * Q_reg * U_reg * QU_reg_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_reg = np.sqrt(P_reg**2 - P_reg_stat_err**2) if P_reg**2 > P_reg_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_reg = princ_angle((90.0 / np.pi) * np.arctan2(U_reg, Q_reg))
|
PA_reg = princ_angle((90.0 / np.pi) * np.arctan2(U_reg, Q_reg))
|
||||||
PA_reg_err = (90.0 / (np.pi * (Q_reg**2 + U_reg**2))) * np.sqrt(
|
PA_reg_err = (90.0 / (np.pi * (Q_reg**2 + U_reg**2))) * np.sqrt(
|
||||||
@@ -3365,12 +3405,18 @@ class pol_map(object):
|
|||||||
I_cut = self.I[new_cut].sum()
|
I_cut = self.I[new_cut].sum()
|
||||||
Q_cut = self.Q[new_cut].sum()
|
Q_cut = self.Q[new_cut].sum()
|
||||||
U_cut = self.U[new_cut].sum()
|
U_cut = self.U[new_cut].sum()
|
||||||
I_cut_err = np.sqrt(np.sum(s_I[new_cut] ** 2))
|
I_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 0][new_cut]))
|
||||||
Q_cut_err = np.sqrt(np.sum(s_Q[new_cut] ** 2))
|
Q_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 1][new_cut]))
|
||||||
U_cut_err = np.sqrt(np.sum(s_U[new_cut] ** 2))
|
U_cut_err = np.sqrt(np.sum(self.IQU_cov[2, 2][new_cut]))
|
||||||
IQ_cut_err = np.sqrt(np.sum(s_IQ[new_cut] ** 2))
|
IQ_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 1][new_cut] ** 2))
|
||||||
IU_cut_err = np.sqrt(np.sum(s_IU[new_cut] ** 2))
|
IU_cut_err = np.sqrt(np.sum(self.IQU_cov[0, 2][new_cut] ** 2))
|
||||||
QU_cut_err = np.sqrt(np.sum(s_QU[new_cut] ** 2))
|
QU_cut_err = np.sqrt(np.sum(self.IQU_cov[1, 2][new_cut] ** 2))
|
||||||
|
I_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 0][new_cut]))
|
||||||
|
Q_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 1][new_cut]))
|
||||||
|
U_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[2, 2][new_cut]))
|
||||||
|
IQ_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 1][new_cut] ** 2))
|
||||||
|
IU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[0, 2][new_cut] ** 2))
|
||||||
|
QU_cut_stat_err = np.sqrt(np.sum(self.IQU_stat_cov[1, 2][new_cut] ** 2))
|
||||||
|
|
||||||
with np.errstate(divide="ignore", invalid="ignore"):
|
with np.errstate(divide="ignore", invalid="ignore"):
|
||||||
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
|
P_cut = np.sqrt(Q_cut**2 + U_cut**2) / I_cut
|
||||||
@@ -3383,6 +3429,16 @@ class pol_map(object):
|
|||||||
)
|
)
|
||||||
/ I_cut
|
/ I_cut
|
||||||
)
|
)
|
||||||
|
P_cut_stat_err = (
|
||||||
|
P_cut
|
||||||
|
/ I_cut
|
||||||
|
* np.sqrt(
|
||||||
|
I_cut_stat_err
|
||||||
|
- 2.0 / (I_cut * P_cut**2) * (Q_cut * IQ_cut_stat_err + U_cut * IU_cut_stat_err)
|
||||||
|
+ 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
|
PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut))
|
||||||
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
|
PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(
|
||||||
@@ -3403,7 +3459,7 @@ class pol_map(object):
|
|||||||
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
|
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
|
||||||
)
|
)
|
||||||
+ "\n"
|
+ "\n"
|
||||||
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
|
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
|
||||||
+ "\n"
|
+ "\n"
|
||||||
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
|
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
|
||||||
+ str_conf
|
+ str_conf
|
||||||
@@ -3415,7 +3471,7 @@ class pol_map(object):
|
|||||||
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
|
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
|
||||||
# )
|
# )
|
||||||
# + "\n"
|
# + "\n"
|
||||||
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
|
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
|
||||||
# + "\n"
|
# + "\n"
|
||||||
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
|
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
|
||||||
# )
|
# )
|
||||||
@@ -3439,7 +3495,7 @@ class pol_map(object):
|
|||||||
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
|
self.pivot_wav, sci_not(I_reg * self.map_convert, I_reg_err * self.map_convert, 2)
|
||||||
)
|
)
|
||||||
+ "\n"
|
+ "\n"
|
||||||
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
|
+ r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_reg * 100.0, np.ceil(P_reg_err * 1000.0) / 10.0)
|
||||||
+ "\n"
|
+ "\n"
|
||||||
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
|
+ r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg, np.ceil(PA_reg_err * 10.0) / 10.0)
|
||||||
+ str_conf
|
+ str_conf
|
||||||
@@ -3451,7 +3507,7 @@ class pol_map(object):
|
|||||||
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
|
# self.pivot_wav, sci_not(I_cut * self.map_convert, I_cut_err * self.map_convert, 2)
|
||||||
# )
|
# )
|
||||||
# + "\n"
|
# + "\n"
|
||||||
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
|
# + r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(debiased_P_cut * 100.0, np.ceil(P_cut_err * 1000.0) / 10.0)
|
||||||
# + "\n"
|
# + "\n"
|
||||||
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
|
# + r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut, np.ceil(PA_cut_err * 10.0) / 10.0)
|
||||||
# )
|
# )
|
||||||
|
|||||||
@@ -1310,12 +1310,12 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
|
|
||||||
# Statistical error: Poisson noise is assumed
|
# Statistical error: Poisson noise is assumed
|
||||||
sigma_flux = np.array([np.sqrt(flux / head["exptime"]) for flux, head in zip(pol_flux, pol_headers)])
|
sigma_flux = np.array([np.sqrt(flux / head["exptime"]) for flux, head in zip(pol_flux, pol_headers)])
|
||||||
s_IQU_stat = np.zeros(Stokes_cov.shape)
|
Stokes_stat_cov = np.zeros(Stokes_cov.shape)
|
||||||
for i in range(Stokes_cov.shape[0]):
|
for i in range(Stokes_cov.shape[0]):
|
||||||
s_IQU_stat[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
Stokes_stat_cov[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||||
for j in [k for k in range(3) if k > i]:
|
for j in [k for k in range(3) if k > i]:
|
||||||
s_IQU_stat[i, j] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
Stokes_stat_cov[i, j] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||||
s_IQU_stat[j, i] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
Stokes_stat_cov[j, i] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||||
|
|
||||||
# Compute the derivative of each Stokes parameter with respect to the polarizer orientation
|
# Compute the derivative of each Stokes parameter with respect to the polarizer orientation
|
||||||
dIQU_dtheta = np.zeros(Stokes_cov.shape)
|
dIQU_dtheta = np.zeros(Stokes_cov.shape)
|
||||||
@@ -1368,19 +1368,23 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Compute the uncertainty associated with the polarizers' orientation (see Kishimoto 1999)
|
# Compute the uncertainty associated with the polarizers' orientation (see Kishimoto 1999)
|
||||||
s_IQU_axis = np.zeros(Stokes_cov.shape)
|
Stokes_axis_cov = np.zeros(Stokes_cov.shape)
|
||||||
for i in range(Stokes_cov.shape[0]):
|
for i in range(Stokes_cov.shape[0]):
|
||||||
s_IQU_axis[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
|
Stokes_axis_cov[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
|
||||||
for j in [k for k in range(3) if k > i]:
|
for j in [k for k in range(3) if k > i]:
|
||||||
s_IQU_axis[i, j] = np.sum(
|
Stokes_axis_cov[i, j] = np.sum(
|
||||||
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||||
)
|
)
|
||||||
s_IQU_axis[j, i] = np.sum(
|
Stokes_axis_cov[j, i] = np.sum(
|
||||||
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add quadratically the uncertainty to the Stokes covariance matrix
|
# Add quadratically the uncertainty to the Stokes covariance matrix
|
||||||
Stokes_cov += s_IQU_axis + s_IQU_stat
|
for i in range(Stokes_cov.shape[0]):
|
||||||
|
Stokes_cov[i, i] += Stokes_axis_cov[i, i] + Stokes_stat_cov[i, i]
|
||||||
|
for j in [k for k in range(Stokes_cov.shape[0]) if k > i]:
|
||||||
|
Stokes_cov[i, j] = np.sqrt(Stokes_cov[i, j] ** 2 + Stokes_axis_cov[i, j] ** 2 + Stokes_stat_cov[i, j] ** 2)
|
||||||
|
Stokes_cov[j, i] = np.sqrt(Stokes_cov[j, i] ** 2 + Stokes_axis_cov[j, i] ** 2 + Stokes_stat_cov[j, i] ** 2)
|
||||||
|
|
||||||
# Save values to single header
|
# Save values to single header
|
||||||
header_stokes = pol_headers[0]
|
header_stokes = pol_headers[0]
|
||||||
@@ -1414,8 +1418,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
for i in range(3):
|
for i in range(3):
|
||||||
Stokes_cov[i, i] = np.sum([exp**2 * cov for exp, cov in zip(all_exp, all_Stokes_cov[:, i, i])], axis=0) / all_exp.sum() ** 2
|
Stokes_cov[i, i] = np.sum([exp**2 * cov for exp, cov in zip(all_exp, all_Stokes_cov[:, i, i])], axis=0) / all_exp.sum() ** 2
|
||||||
for j in [x for x in range(3) if x != i]:
|
for j in [x for x in range(3) if x != i]:
|
||||||
Stokes_cov[i, j] = np.sqrt(np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, i, j])], axis=0) / all_exp.sum() ** 2)
|
Stokes_cov[i, j] = np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, i, j])], axis=0) / all_exp.sum() ** 2
|
||||||
Stokes_cov[j, i] = np.sqrt(np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, j, i])], axis=0) / all_exp.sum() ** 2)
|
Stokes_cov[j, i] = np.sum([exp**2 * cov**2 for exp, cov in zip(all_exp, all_Stokes_cov[:, j, i])], axis=0) / all_exp.sum() ** 2
|
||||||
|
|
||||||
# Save values to single header
|
# Save values to single header
|
||||||
header_stokes = all_header_stokes[0]
|
header_stokes = all_header_stokes[0]
|
||||||
@@ -1430,6 +1434,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
Q_stokes[np.isnan(Q_stokes)] = 0.0
|
Q_stokes[np.isnan(Q_stokes)] = 0.0
|
||||||
U_stokes[np.isnan(U_stokes)] = 0.0
|
U_stokes[np.isnan(U_stokes)] = 0.0
|
||||||
Stokes_cov[np.isnan(Stokes_cov)] = fmax
|
Stokes_cov[np.isnan(Stokes_cov)] = fmax
|
||||||
|
Stokes_stat_cov[np.isnan(Stokes_cov)] = fmax
|
||||||
|
|
||||||
if integrate:
|
if integrate:
|
||||||
# Compute integrated values for P, PA before any rotation
|
# Compute integrated values for P, PA before any rotation
|
||||||
@@ -1443,29 +1448,47 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
IQ_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 1][mask] ** 2))
|
IQ_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 1][mask] ** 2))
|
||||||
IU_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 2][mask] ** 2))
|
IU_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 2][mask] ** 2))
|
||||||
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
|
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
|
||||||
|
I_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 0][mask]))
|
||||||
|
Q_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 1][mask]))
|
||||||
|
U_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[2, 2][mask]))
|
||||||
|
IQ_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 1][mask] ** 2))
|
||||||
|
IU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 2][mask] ** 2))
|
||||||
|
QU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 2][mask] ** 2))
|
||||||
|
|
||||||
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
||||||
P_diluted_err = np.sqrt(
|
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
||||||
(Q_diluted**2 * Q_diluted_err**2 + U_diluted**2 * U_diluted_err**2 + 2.0 * Q_diluted * U_diluted * QU_diluted_err) / (Q_diluted**2 + U_diluted**2)
|
(Q_diluted**2 * Q_diluted_err**2 + U_diluted**2 * U_diluted_err**2 + 2.0 * Q_diluted * U_diluted * QU_diluted_err) / (Q_diluted**2 + U_diluted**2)
|
||||||
+ ((Q_diluted / I_diluted) ** 2 + (U_diluted / I_diluted) ** 2) * I_diluted_err**2
|
+ ((Q_diluted / I_diluted) ** 2 + (U_diluted / I_diluted) ** 2) * I_diluted_err**2
|
||||||
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
||||||
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
||||||
)
|
)
|
||||||
|
P_diluted_stat_err = (
|
||||||
|
P_diluted
|
||||||
|
/ I_diluted
|
||||||
|
* np.sqrt(
|
||||||
|
I_diluted_stat_err
|
||||||
|
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
|
||||||
|
+ 1.0
|
||||||
|
/ (I_diluted**2 * P_diluted**4)
|
||||||
|
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
||||||
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
||||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||||
)
|
)
|
||||||
|
|
||||||
header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
header_stokes["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
|
||||||
header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||||
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||||
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||||
|
|
||||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_stat
|
return I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes
|
||||||
|
|
||||||
|
|
||||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_stat=None):
|
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, header_stokes):
|
||||||
"""
|
"""
|
||||||
Compute the polarization degree (in %) and angle (in deg) and their
|
Compute the polarization degree (in %) and angle (in deg) and their
|
||||||
respective errors from given Stokes parameters.
|
respective errors from given Stokes parameters.
|
||||||
@@ -1540,29 +1563,22 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_s
|
|||||||
s_P[np.isnan(s_P)] = fmax
|
s_P[np.isnan(s_P)] = fmax
|
||||||
s_PA[np.isnan(s_PA)] = fmax
|
s_PA[np.isnan(s_PA)] = fmax
|
||||||
|
|
||||||
# Compute the total exposure time so that
|
|
||||||
# I_stokes*exp_tot = N_tot the total number of events
|
|
||||||
N_obs = I_stokes * float(header_stokes["exptime"])
|
|
||||||
|
|
||||||
# Errors on P, PA supposing Poisson noise
|
# Errors on P, PA supposing Poisson noise
|
||||||
s_P_P = np.ones(I_stokes.shape) * fmax
|
s_P_P = np.ones(I_stokes.shape) * fmax
|
||||||
s_PA_P = np.ones(I_stokes.shape) * fmax
|
s_PA_P = np.ones(I_stokes.shape) * fmax
|
||||||
maskP = np.logical_and(mask, P > 0.0)
|
maskP = np.logical_and(mask, P > 0.0)
|
||||||
if s_IQU_stat is not None:
|
|
||||||
# If IQU covariance matrix containing only statistical error is given propagate to P and PA
|
|
||||||
# Catch Invalid value in sqrt when diagonal terms are big
|
|
||||||
with warnings.catch_warnings(record=True) as _:
|
|
||||||
s_P_P[maskP] = (
|
s_P_P[maskP] = (
|
||||||
P[maskP]
|
P[maskP]
|
||||||
/ I_stokes[maskP]
|
/ I_stokes[maskP]
|
||||||
* np.sqrt(
|
* np.sqrt(
|
||||||
s_IQU_stat[0, 0][maskP]
|
Stokes_stat_cov[0, 0][maskP]
|
||||||
- 2.0 / (I_stokes[maskP] * P[maskP] ** 2) * (Q_stokes[maskP] * s_IQU_stat[0, 1][maskP] + U_stokes[maskP] * s_IQU_stat[0, 2][maskP])
|
- 2.0 / (I_stokes[maskP] * P[maskP] ** 2) * (Q_stokes[maskP] * Stokes_stat_cov[0, 1][maskP] + U_stokes[maskP] * Stokes_stat_cov[0, 2][maskP])
|
||||||
+ 1.0
|
+ 1.0
|
||||||
/ (I_stokes[maskP] ** 2 * P[maskP] ** 4)
|
/ (I_stokes[maskP] ** 2 * P[maskP] ** 4)
|
||||||
* (
|
* (
|
||||||
Q_stokes[maskP] ** 2 * s_IQU_stat[1, 1][maskP]
|
Q_stokes[maskP] ** 2 * Stokes_stat_cov[1, 1][maskP]
|
||||||
+ U_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP] * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
+ U_stokes[maskP] ** 2 * Stokes_stat_cov[2, 2][maskP]
|
||||||
|
+ 2.0 * Q_stokes[maskP] * U_stokes[maskP] * Stokes_stat_cov[1, 2][maskP]
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1570,15 +1586,11 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_s
|
|||||||
90.0
|
90.0
|
||||||
/ (np.pi * I_stokes[maskP] ** 2 * P[maskP] ** 2)
|
/ (np.pi * I_stokes[maskP] ** 2 * P[maskP] ** 2)
|
||||||
* (
|
* (
|
||||||
Q_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP]
|
Q_stokes[maskP] ** 2 * Stokes_stat_cov[2, 2][maskP]
|
||||||
+ U_stokes[maskP] * s_IQU_stat[1, 1][maskP]
|
+ U_stokes[maskP] * Stokes_stat_cov[1, 1][maskP]
|
||||||
- 2.0 * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
- 2.0 * Q_stokes[maskP] * U_stokes[maskP] * Stokes_stat_cov[1, 2][maskP]
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
else:
|
|
||||||
# Approximate Poisson error for P and PA
|
|
||||||
s_P_P[mask] = np.sqrt(2.0 / N_obs[mask])
|
|
||||||
s_PA_P[maskP] = s_P_P[maskP] / P[maskP] * 90.0 / np.pi
|
|
||||||
|
|
||||||
# Catch expected "OverflowWarning" as wrong pixel have an overflowing error
|
# Catch expected "OverflowWarning" as wrong pixel have an overflowing error
|
||||||
with warnings.catch_warnings(record=True) as _:
|
with warnings.catch_warnings(record=True) as _:
|
||||||
@@ -1600,7 +1612,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_s
|
|||||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||||
|
|
||||||
|
|
||||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, s_IQU_stat=None, SNRi_cut=None):
|
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, Stokes_stat_cov, data_mask, header_stokes, SNRi_cut=None):
|
||||||
"""
|
"""
|
||||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||||
matrix to rotate Q, U of a given angle in degrees and update header
|
matrix to rotate Q, U of a given angle in degrees and update header
|
||||||
@@ -1617,7 +1629,11 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
Image (2D floats) containing the Stokes parameters accounting for
|
Image (2D floats) containing the Stokes parameters accounting for
|
||||||
+45/-45deg linear polarization intensity
|
+45/-45deg linear polarization intensity
|
||||||
Stokes_cov : numpy.ndarray
|
Stokes_cov : numpy.ndarray
|
||||||
Covariance matrix of the Stokes parameters I, Q, U.
|
Covariance matrix containing all uncertainties of the Stokes
|
||||||
|
parameters I, Q, U.
|
||||||
|
Stokes_stat_cov : numpy.ndarray
|
||||||
|
Covariance matrix containing statistical uncertainty of the Stokes
|
||||||
|
parameters I, Q, U.
|
||||||
data_mask : numpy.ndarray
|
data_mask : numpy.ndarray
|
||||||
2D boolean array delimiting the data to work on.
|
2D boolean array delimiting the data to work on.
|
||||||
header_stokes : astropy.fits.header.Header
|
header_stokes : astropy.fits.header.Header
|
||||||
@@ -1639,6 +1655,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
accounting for +45/-45deg linear polarization intensity.
|
accounting for +45/-45deg linear polarization intensity.
|
||||||
new_Stokes_cov : numpy.ndarray
|
new_Stokes_cov : numpy.ndarray
|
||||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
Updated covariance matrix of the Stokes parameters I, Q, U.
|
||||||
|
new_Stokes_stat_cov : numpy.ndarray
|
||||||
|
Updated statistical covariance matrix of the Stokes parameters I, Q, U.
|
||||||
new_header_stokes : astropy.fits.header.Header
|
new_header_stokes : astropy.fits.header.Header
|
||||||
Updated Header file associated with the Stokes fluxes accounting
|
Updated Header file associated with the Stokes fluxes accounting
|
||||||
for the new orientation angle.
|
for the new orientation angle.
|
||||||
@@ -1670,11 +1688,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
Q_stokes = zeropad(Q_stokes, shape)
|
Q_stokes = zeropad(Q_stokes, shape)
|
||||||
U_stokes = zeropad(U_stokes, shape)
|
U_stokes = zeropad(U_stokes, shape)
|
||||||
data_mask = zeropad(data_mask, shape)
|
data_mask = zeropad(data_mask, shape)
|
||||||
Stokes_cov = zeropad(Stokes_cov, [*Stokes_cov.shape[:-2], *shape])
|
|
||||||
new_I_stokes = np.zeros(shape)
|
new_I_stokes = np.zeros(shape)
|
||||||
new_Q_stokes = np.zeros(shape)
|
new_Q_stokes = np.zeros(shape)
|
||||||
new_U_stokes = np.zeros(shape)
|
new_U_stokes = np.zeros(shape)
|
||||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape))
|
|
||||||
|
|
||||||
# Rotate original images using scipy.ndimage.rotate
|
# Rotate original images using scipy.ndimage.rotate
|
||||||
new_I_stokes = sc_rotate(I_stokes, ang, order=1, reshape=False, cval=0.0)
|
new_I_stokes = sc_rotate(I_stokes, ang, order=1, reshape=False, cval=0.0)
|
||||||
@@ -1683,6 +1699,10 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
new_data_mask = sc_rotate(data_mask.astype(float) * 10.0, ang, order=1, reshape=False, cval=0.0)
|
new_data_mask = sc_rotate(data_mask.astype(float) * 10.0, ang, order=1, reshape=False, cval=0.0)
|
||||||
new_data_mask[new_data_mask < 1.0] = 0.0
|
new_data_mask[new_data_mask < 1.0] = 0.0
|
||||||
new_data_mask = new_data_mask.astype(bool)
|
new_data_mask = new_data_mask.astype(bool)
|
||||||
|
|
||||||
|
# Rotate covariance matrix
|
||||||
|
Stokes_cov = zeropad(Stokes_cov, [*Stokes_cov.shape[:-2], *shape])
|
||||||
|
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
new_Stokes_cov[i, j] = sc_rotate(Stokes_cov[i, j], ang, order=1, reshape=False, cval=0.0)
|
new_Stokes_cov[i, j] = sc_rotate(Stokes_cov[i, j], ang, order=1, reshape=False, cval=0.0)
|
||||||
@@ -1693,16 +1713,16 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j] = np.dot(mrot, np.array([new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j]])).T
|
new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j] = np.dot(mrot, np.array([new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j]])).T
|
||||||
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
|
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
|
||||||
|
|
||||||
if s_IQU_stat is not None:
|
# Rotate statistical covariance matrix
|
||||||
s_IQU_stat = zeropad(s_IQU_stat, [*s_IQU_stat.shape[:-2], *shape])
|
Stokes_stat_cov = zeropad(Stokes_stat_cov, [*Stokes_stat_cov.shape[:-2], *shape])
|
||||||
new_s_IQU_stat = np.zeros((*s_IQU_stat.shape[:-2], *shape))
|
new_Stokes_stat_cov = np.zeros((*Stokes_stat_cov.shape[:-2], *shape))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
new_s_IQU_stat[i, j] = sc_rotate(s_IQU_stat[i, j], ang, order=1, reshape=False, cval=0.0)
|
new_Stokes_stat_cov[i, j] = sc_rotate(Stokes_stat_cov[i, j], ang, order=1, reshape=False, cval=0.0)
|
||||||
new_s_IQU_stat[i, i] = np.abs(new_s_IQU_stat[i, i])
|
new_Stokes_stat_cov[i, i] = np.abs(new_Stokes_stat_cov[i, i])
|
||||||
for i in range(shape[0]):
|
for i in range(shape[0]):
|
||||||
for j in range(shape[1]):
|
for j in range(shape[1]):
|
||||||
new_s_IQU_stat[:, :, i, j] = np.dot(mrot, np.dot(new_s_IQU_stat[:, :, i, j], mrot.T))
|
new_Stokes_stat_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_stat_cov[:, :, i, j], mrot.T))
|
||||||
|
|
||||||
# Update headers to new angle
|
# Update headers to new angle
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||||
@@ -1732,12 +1752,18 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
I_diluted = new_I_stokes[mask].sum()
|
I_diluted = new_I_stokes[mask].sum()
|
||||||
Q_diluted = new_Q_stokes[mask].sum()
|
Q_diluted = new_Q_stokes[mask].sum()
|
||||||
U_diluted = new_U_stokes[mask].sum()
|
U_diluted = new_U_stokes[mask].sum()
|
||||||
I_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 0][mask]))
|
I_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 0][mask]))
|
||||||
Q_diluted_err = np.sqrt(np.sum(new_Stokes_cov[1, 1][mask]))
|
Q_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 1][mask]))
|
||||||
U_diluted_err = np.sqrt(np.sum(new_Stokes_cov[2, 2][mask]))
|
U_diluted_err = np.sqrt(np.sum(Stokes_cov[2, 2][mask]))
|
||||||
IQ_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 1][mask] ** 2))
|
IQ_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 1][mask] ** 2))
|
||||||
IU_diluted_err = np.sqrt(np.sum(new_Stokes_cov[0, 2][mask] ** 2))
|
IU_diluted_err = np.sqrt(np.sum(Stokes_cov[0, 2][mask] ** 2))
|
||||||
QU_diluted_err = np.sqrt(np.sum(new_Stokes_cov[1, 2][mask] ** 2))
|
QU_diluted_err = np.sqrt(np.sum(Stokes_cov[1, 2][mask] ** 2))
|
||||||
|
I_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 0][mask]))
|
||||||
|
Q_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 1][mask]))
|
||||||
|
U_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[2, 2][mask]))
|
||||||
|
IQ_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 1][mask] ** 2))
|
||||||
|
IU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[0, 2][mask] ** 2))
|
||||||
|
QU_diluted_stat_err = np.sqrt(np.sum(Stokes_stat_cov[1, 2][mask] ** 2))
|
||||||
|
|
||||||
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
P_diluted = np.sqrt(Q_diluted**2 + U_diluted**2) / I_diluted
|
||||||
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
P_diluted_err = (1.0 / I_diluted) * np.sqrt(
|
||||||
@@ -1746,21 +1772,30 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
- 2.0 * (Q_diluted / I_diluted) * IQ_diluted_err
|
||||||
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
- 2.0 * (U_diluted / I_diluted) * IU_diluted_err
|
||||||
)
|
)
|
||||||
|
P_diluted_stat_err = (
|
||||||
|
P_diluted
|
||||||
|
/ I_diluted
|
||||||
|
* np.sqrt(
|
||||||
|
I_diluted_stat_err
|
||||||
|
- 2.0 / (I_diluted * P_diluted**2) * (Q_diluted * IQ_diluted_stat_err + U_diluted * IU_diluted_stat_err)
|
||||||
|
+ 1.0
|
||||||
|
/ (I_diluted**2 * P_diluted**4)
|
||||||
|
* (Q_diluted**2 * Q_diluted_stat_err + U_diluted**2 * U_diluted_stat_err + 2.0 * Q_diluted * U_diluted * QU_diluted_stat_err)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
debiased_P_diluted = np.sqrt(P_diluted**2 - P_diluted_stat_err**2) if P_diluted**2 > P_diluted_stat_err**2 else 0.0
|
||||||
|
|
||||||
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
PA_diluted = princ_angle((90.0 / np.pi) * np.arctan2(U_diluted, Q_diluted))
|
||||||
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
PA_diluted_err = (90.0 / (np.pi * (Q_diluted**2 + U_diluted**2))) * np.sqrt(
|
||||||
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
U_diluted**2 * Q_diluted_err**2 + Q_diluted**2 * U_diluted_err**2 - 2.0 * Q_diluted * U_diluted * QU_diluted_err
|
||||||
)
|
)
|
||||||
|
|
||||||
new_header_stokes["P_int"] = (P_diluted, "Integrated polarization degree")
|
new_header_stokes["P_int"] = (debiased_P_diluted, "Integrated polarization degree")
|
||||||
new_header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
new_header_stokes["sP_int"] = (np.ceil(P_diluted_err * 1000.0) / 1000.0, "Integrated polarization degree error")
|
||||||
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
|
||||||
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
|
||||||
|
|
||||||
if s_IQU_stat is not None:
|
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_Stokes_stat_cov, new_data_mask, new_header_stokes
|
||||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes, new_s_IQU_stat
|
|
||||||
else:
|
|
||||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes
|
|
||||||
|
|
||||||
|
|
||||||
def rotate_data(data_array, error_array, data_mask, headers):
|
def rotate_data(data_array, error_array, data_mask, headers):
|
||||||
|
|||||||
@@ -43,7 +43,9 @@ def main(infile, P_cut=0.99, target=None, display="pf", output_dir=None):
|
|||||||
if target is None:
|
if target is None:
|
||||||
target = Stokes[0].header["TARGNAME"]
|
target = Stokes[0].header["TARGNAME"]
|
||||||
|
|
||||||
fig = figure(figsize=(8, 8.5), layout="constrained")
|
ratiox = max(int(stkI.shape[1] / (stkI.shape[0])), 1)
|
||||||
|
ratioy = max(int((stkI.shape[0]) / stkI.shape[1]), 1)
|
||||||
|
fig = figure(figsize=(8 * ratiox, 8 * ratioy), layout="constrained")
|
||||||
fig, ax = polarization_map(Stokes, P_cut=P_cut, step_vec=1, scale_vec=5, display=display, fig=fig, width=0.33, linewidth=0.5)
|
fig, ax = polarization_map(Stokes, P_cut=P_cut, step_vec=1, scale_vec=5, display=display, fig=fig, width=0.33, linewidth=0.5)
|
||||||
|
|
||||||
ax.plot(*Stokescenter, marker="+", color="k", lw=3)
|
ax.plot(*Stokescenter, marker="+", color="k", lw=3)
|
||||||
|
|||||||
Reference in New Issue
Block a user