general improvements to pipeline

This commit is contained in:
Tibeuleu
2023-01-31 17:39:25 +01:00
parent 5c0d08a44b
commit fc80bafc66
4 changed files with 35 additions and 26 deletions

View File

@@ -131,19 +131,19 @@ def main():
display_crop = False display_crop = False
# Error estimation # Error estimation
error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15)) error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15))
subtract_error = False subtract_error = True
display_error = False display_error = False
# Data binning # Data binning
rebin = True rebin = True
pxsize = 10 pxsize = 0.10
px_scale = 'pixel' #pixel, arcsec or full px_scale = 'arcsec' #pixel, arcsec or full
rebin_operation = 'sum' #sum or average rebin_operation = 'sum' #sum or average
# Alignement # Alignement
align_center = 'image' #If None will align image to image center align_center = 'image' #If None will align image to image center
display_data = False display_data = False
# Smoothing # Smoothing
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine smoothing_function = 'weighted_gaussian' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = None #If None, no smoothing is done smoothing_FWHM = 0.20 #If None, no smoothing is done
smoothing_scale = 'arcsec' #pixel or arcsec smoothing_scale = 'arcsec' #pixel or arcsec
# Rotation # Rotation
rotate_stokes = True rotate_stokes = True
@@ -153,7 +153,7 @@ def main():
final_display = True final_display = True
# Polarization map output # Polarization map output
figname = 'NGC1068_FOC' #target/intrument name figname = 'NGC1068_FOC' #target/intrument name
figtype = '_bin10px' #additionnal informations figtype = '_wg_020' #additionnal informations
SNRp_cut = 5. #P measurments with SNR>3 SNRp_cut = 5. #P measurments with SNR>3
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%. SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
@@ -173,7 +173,6 @@ def main():
# Estimate error from data background, estimated from sub-image of desired sub_shape. # Estimate error from data background, estimated from sub-image of desired sub_shape.
background = None background = None
if px_scale.lower() not in ['full','integrate']:
data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, subtract_error=subtract_error, display=display_error, savename=figname+"_errors", plots_folder=plots_folder, return_background=True) data_array, error_array, headers, background = proj_red.get_error(data_array, headers, error_array, sub_type=error_sub_type, subtract_error=subtract_error, display=display_error, savename=figname+"_errors", plots_folder=plots_folder, return_background=True)
# Align and rescale images with oversampling. # Align and rescale images with oversampling.
@@ -181,8 +180,6 @@ def main():
# Rebin data to desired pixel size. # Rebin data to desired pixel size.
if rebin: if rebin:
if px_scale.lower() in ['full','integrate']:
data_array, error_array, headers = proj_red.get_error(data_array, headers, error_array, data_mask, sub_shape=error_sub_shape, display=display_error, savename=figname+"_errors", plots_folder=plots_folder)
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask) data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
# Rotate data to have North up # Rotate data to have North up
@@ -229,6 +226,9 @@ def main():
stokescrop.writeto(data_folder+figname+figtype+".fits") stokescrop.writeto(data_folder+figname+figtype+".fits")
Stokes_test, data_mask = stokescrop.hdul_crop, stokescrop.data_mask Stokes_test, data_mask = stokescrop.hdul_crop, stokescrop.data_mask
print("F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(headers[0]['photplam'],*proj_plots.sci_not(Stokes_test[0].data[data_mask].sum()*headers[0]['photflam'],np.sqrt(Stokes_test[3].data[0,0][data_mask].sum())*headers[0]['photflam'],2,out=int)))
print("P_int = {0:.1f} ± {1:.1f} %".format(headers[0]['p_int']*100.,np.ceil(headers[0]['p_int_err']*1000.)/10.))
print("PA_int = {0:.1f} ± {1:.1f} °".format(headers[0]['pa_int'],np.ceil(headers[0]['pa_int_err']*10.)/10.))
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error). # Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
if px_scale.lower() not in ['full','integrate'] and final_display: if px_scale.lower() not in ['full','integrate'] and final_display:
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder) proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder)

View File

@@ -89,10 +89,10 @@ def display_bkg(data, background, std_bkg, headers, histograms=None, binning=Non
filt = headers[0]['filtnam1'] filt = headers[0]['filtnam1']
#plots #plots
im = ax2.imshow(data0, norm=LogNorm(data0[data0>0.].mean()/10.,data0.max()), origin='lower', cmap='gray') im = ax2.imshow(data0, norm=LogNorm(data0[data0>0.].mean()/10.,data0.max()), origin='lower', cmap='gray')
bkg_im = ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.7) bkg_im = ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
if not(rectangle is None): if not(rectangle is None):
x, y, width, height, angle, color = rectangle[0] x, y, width, height, angle, color = rectangle[0]
ax2.add_patch(Rectangle((x, y),width,height,edgecolor=color,fill=False)) ax2.add_patch(Rectangle((x, y),width,height,edgecolor=color,fill=False,lw=2))
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.02, 0.95), xycoords='axes fraction') ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.02, 0.95), xycoords='axes fraction')
ax2.annotate(filt, color='white', fontsize=14, xy=(0.02, 0.02), xycoords='axes fraction') ax2.annotate(filt, color='white', fontsize=14, xy=(0.02, 0.02), xycoords='axes fraction')
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(0.80, 0.02), xycoords='axes fraction') ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(0.80, 0.02), xycoords='axes fraction')

View File

@@ -169,6 +169,7 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
header['datatype'] = ('I_stokes', 'type of data stored in the HDU') header['datatype'] = ('I_stokes', 'type of data stored in the HDU')
I_stokes[(1-data_mask).astype(bool)] = 0. I_stokes[(1-data_mask).astype(bool)] = 0.
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header) primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
primary_hdu.name = 'I_stokes'
hdul.append(primary_hdu) hdul.append(primary_hdu)
#Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList #Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
@@ -183,6 +184,7 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
if not name == 'IQU_cov_matrix': if not name == 'IQU_cov_matrix':
data[(1-data_mask).astype(bool)] = 0. data[(1-data_mask).astype(bool)] = 0.
hdu = fits.ImageHDU(data=data,header=hdu_header) hdu = fits.ImageHDU(data=data,header=hdu_header)
hdu.name = name
hdul.append(hdu) hdul.append(hdu)
#Save fits file to designated filepath #Save fits file to designated filepath

View File

@@ -67,18 +67,23 @@ def princ_angle(ang):
return A[0] return A[0]
def sci_not(v,err,rnd=1): def sci_not(v,err,rnd=1,out=str):
""" """
Return the scientifque error notation as a string. Return the scientifque error notation as a string.
""" """
power = - int(('%E' % v)[-3:])+1 power = - int(('%E' % v)[-3:])+1
output = r"({0}".format(round(v*10**power,rnd)) output = [r"({0}".format(round(v*10**power,rnd)),round(v*10**power,rnd)]
if type(err) == list: if type(err) == list:
for error in err: for error in err:
output += r" $\pm$ {0}".format(round(error*10**power,rnd)) output[0] += r" $\pm$ {0}".format(round(error*10**power,rnd))
output.append(round(error*10**power,rnd))
else: else:
output += r" $\pm$ {0}".format(round(err*10**power,rnd)) output[0] += r" $\pm$ {0}".format(round(err*10**power,rnd))
return output+r")e{0}".format(-power) output.append(round(err*10**power,rnd))
if out==str:
return output[0]+r")e{0}".format(-power)
else:
return *output[1:],-power
def plot_obs(data_array, headers, shape=None, vmin=0., vmax=6., rectangle=None, def plot_obs(data_array, headers, shape=None, vmin=0., vmax=6., rectangle=None,
@@ -309,7 +314,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
if display.lower() in ['intensity']: if display.lower() in ['intensity']:
# If no display selected, show intensity map # If no display selected, show intensity map
display='i' display='i'
vmin, vmax = np.max(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux) vmin, vmax = 3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]") cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10) levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
@@ -320,7 +325,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
# Display polarisation flux # Display polarisation flux
display='pf' display='pf'
pf_mask = (stkI.data > 0.) * (pol.data > 0.) pf_mask = (stkI.data > 0.) * (pol.data > 0.)
vmin, vmax = np.max(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux) vmin, vmax = 3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]") cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10) levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
@@ -350,13 +355,13 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
elif display.lower() in ['s_i','i_err']: elif display.lower() in ['s_i','i_err']:
# Display intensity error map # Display intensity error map
display='s_i' display='s_i'
vmin, vmax = 0., np.max(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux) vmin, vmax = np.min(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux), np.max(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux)
im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]") cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
elif display.lower() in ['snr','snri']: elif display.lower() in ['snr','snri']:
# Display I_stokes signal-to-noise map # Display I_stokes signal-to-noise map
display='snri' display='snri'
vmin, vmax = 0., np.max(SNRi[SNRi > 0.]) vmin, vmax = 0., np.max(SNRi[np.isfinite(SNRi)])
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$I_{Stokes}/\sigma_{I}$") cbar = plt.colorbar(im, cax=cbar_ax, label=r"$I_{Stokes}/\sigma_{I}$")
levelsSNRi = np.linspace(SNRi_cut, vmax*0.99, 10) levelsSNRi = np.linspace(SNRi_cut, vmax*0.99, 10)
@@ -366,7 +371,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
elif display.lower() in ['snrp']: elif display.lower() in ['snrp']:
# Display polarization degree signal-to-noise map # Display polarization degree signal-to-noise map
display='snrp' display='snrp'
vmin, vmax = SNRp_cut, np.max(SNRp[SNRp > 0.]) vmin, vmax = 0., np.max(SNRp[np.isfinite(SNRp)])
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P/\sigma_{P}$") cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P/\sigma_{P}$")
levelsSNRp = np.linspace(SNRp_cut, vmax*0.99, 10) levelsSNRp = np.linspace(SNRp_cut, vmax*0.99, 10)
@@ -375,7 +380,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
#ax.clabel(cont,inline=True,fontsize=6) #ax.clabel(cont,inline=True,fontsize=6)
else: else:
# Defaults to intensity map # Defaults to intensity map
vmin, vmax = np.min(stkI.data[SNRi > SNRi_cut]*convert_flux)/5., np.max(stkI.data[SNRi > SNRi_cut]*convert_flux) vmin, vmax = 3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
#im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.) #im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
#cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]") #cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.) im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
@@ -1545,6 +1550,7 @@ class pol_map(object):
def submit_save(expression): def submit_save(expression):
ax_text_save.set(visible=False) ax_text_save.set(visible=False)
if expression != '': if expression != '':
plt.rcParams.update({'font.size': 15})
save_fig = plt.figure(figsize=(15,15)) save_fig = plt.figure(figsize=(15,15))
save_ax = save_fig.add_subplot(111, projection=self.wcs) save_ax = save_fig.add_subplot(111, projection=self.wcs)
self.ax_cosmetics(ax=save_ax) self.ax_cosmetics(ax=save_ax)
@@ -1560,6 +1566,7 @@ class pol_map(object):
ax_snr_reset.set(visible=True) ax_snr_reset.set(visible=True)
ax_save.set(visible=True) ax_save.set(visible=True)
ax_dump.set(visible=True) ax_dump.set(visible=True)
plt.rcParams.update({'font.size': 10})
self.fig.canvas.draw_idle() self.fig.canvas.draw_idle()
text_save.on_submit(submit_save) text_save.on_submit(submit_save)
@@ -1736,17 +1743,17 @@ class pol_map(object):
self.display_selection = "total_flux" self.display_selection = "total_flux"
if self.display_selection.lower() in ['total_flux']: if self.display_selection.lower() in ['total_flux']:
self.data = self.I*self.convert_flux self.data = self.I*self.convert_flux
vmin, vmax = np.max(np.sqrt(self.IQU_cov[0,0][self.cut])*self.convert_flux), np.max(self.data[self.data > 0.]) vmin, vmax = .5*np.mean(np.sqrt(self.IQU_cov[0,0][self.IQU_cov[0,0] < 3.*self.I])*self.convert_flux), np.max(self.data[self.data > 0.])
norm = LogNorm(vmin, vmax) norm = LogNorm(vmin, vmax)
label = r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]" label = r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ['pol_flux']: elif self.display_selection.lower() in ['pol_flux']:
self.data = self.I*self.convert_flux*self.P self.data = self.I*self.convert_flux*self.P
vmin, vmax = np.max(np.sqrt(self.IQU_cov[0,0][self.cut])*self.convert_flux), np.max(self.I[self.data > 0.]*self.convert_flux) vmin, vmax = .5*np.mean(np.sqrt(self.IQU_cov[0,0][self.IQU_cov[0,0] < 3.*self.I])*self.convert_flux), np.max(self.I[self.data > 0.]*self.convert_flux)
norm = LogNorm(vmin, vmax) norm = LogNorm(vmin, vmax)
label = r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]" label = r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ['pol_deg']: elif self.display_selection.lower() in ['pol_deg']:
self.data = self.P*100. self.data = self.P*100.
vmin, vmax = 0., 100. #np.max(self.data[self.data > 0.]) vmin, vmax = 0., np.max(self.data[self.P > self.s_P])
label = r"$P$ [%]" label = r"$P$ [%]"
elif self.display_selection.lower() in ['pol_ang']: elif self.display_selection.lower() in ['pol_ang']:
self.data = princ_angle(self.PA) self.data = princ_angle(self.PA)