correction for s_P_P and nicer plots
This commit is contained in:
@@ -1314,8 +1314,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
for i in range(Stokes_cov.shape[0]):
|
||||
s_IQU_stat[i, i] = np.sum([coeff_stokes[i, k] ** 2 * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||
for j in [k for k in range(3) if k > i]:
|
||||
s_IQU_stat[i, j] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||
s_IQU_stat[j, i] = np.sum([coeff_stokes[i, k] * coeff_stokes[j, k] * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||
s_IQU_stat[i, j] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||
s_IQU_stat[j, i] = np.sum([abs(coeff_stokes[i, k] * coeff_stokes[j, k]) * sigma_flux[k] ** 2 for k in range(len(sigma_flux))], axis=0)
|
||||
|
||||
# Compute the derivative of each Stokes parameter with respect to the polarizer orientation
|
||||
dIQU_dtheta = np.zeros(Stokes_cov.shape)
|
||||
@@ -1373,10 +1373,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
||||
s_IQU_axis[i, i] = np.sum([dIQU_dtheta[i, k] ** 2 * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0)
|
||||
for j in [k for k in range(3) if k > i]:
|
||||
s_IQU_axis[i, j] = np.sum(
|
||||
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||
)
|
||||
s_IQU_axis[j, i] = np.sum(
|
||||
[dIQU_dtheta[i, k] * dIQU_dtheta[j, k] * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||
[abs(dIQU_dtheta[i, k] * dIQU_dtheta[j, k]) * globals()["sigma_theta"][k] ** 2 for k in range(len(globals()["sigma_theta"]))], axis=0
|
||||
)
|
||||
|
||||
# Add quadratically the uncertainty to the Stokes covariance matrix
|
||||
@@ -1551,30 +1551,30 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, s_IQU_s
|
||||
if s_IQU_stat is not None:
|
||||
# If IQU covariance matrix containing only statistical error is given propagate to P and PA
|
||||
# Catch Invalid value in sqrt when diagonal terms are big
|
||||
with warnings.catch_warnings(record=True) as _:
|
||||
s_P_P[maskP] = (
|
||||
P[maskP]
|
||||
/ I_stokes[maskP]
|
||||
* np.sqrt(
|
||||
s_IQU_stat[0, 0][maskP]
|
||||
- 2.0 / (I_stokes[maskP] * P[maskP] ** 2) * (Q_stokes[maskP] * s_IQU_stat[0, 1][maskP] + U_stokes[maskP] * s_IQU_stat[0, 2][maskP])
|
||||
+ 1.0
|
||||
/ (I_stokes[maskP] ** 2 * P[maskP] ** 4)
|
||||
* (
|
||||
Q_stokes[maskP] ** 2 * s_IQU_stat[1, 1][maskP]
|
||||
+ U_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP] * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
||||
)
|
||||
)
|
||||
)
|
||||
s_PA_P[maskP] = (
|
||||
90.0
|
||||
/ (np.pi * I_stokes[maskP] ** 2 * P[maskP] ** 2)
|
||||
s_P_P[maskP] = (
|
||||
P[maskP]
|
||||
/ I_stokes[maskP]
|
||||
* np.sqrt(
|
||||
s_IQU_stat[0, 0][maskP]
|
||||
- 2.0 / (I_stokes[maskP] * P[maskP] ** 2) * (Q_stokes[maskP] * s_IQU_stat[0, 1][maskP] + U_stokes[maskP] * s_IQU_stat[0, 2][maskP])
|
||||
+ 1.0
|
||||
/ (I_stokes[maskP] ** 2 * P[maskP] ** 4)
|
||||
* (
|
||||
Q_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP]
|
||||
+ U_stokes[maskP] * s_IQU_stat[1, 1][maskP]
|
||||
- 2.0 * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
||||
Q_stokes[maskP] ** 2 * s_IQU_stat[1, 1][maskP]
|
||||
+ U_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP]
|
||||
+ 2.0 * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
||||
)
|
||||
)
|
||||
)
|
||||
s_PA_P[maskP] = (
|
||||
90.0
|
||||
/ (np.pi * I_stokes[maskP] ** 2 * P[maskP] ** 2)
|
||||
* (
|
||||
Q_stokes[maskP] ** 2 * s_IQU_stat[2, 2][maskP]
|
||||
+ U_stokes[maskP] * s_IQU_stat[1, 1][maskP]
|
||||
- 2.0 * Q_stokes[maskP] * U_stokes[maskP] * s_IQU_stat[1, 2][maskP]
|
||||
)
|
||||
)
|
||||
else:
|
||||
# Approximate Poisson error for P and PA
|
||||
s_P_P[mask] = np.sqrt(2.0 / N_obs[mask])
|
||||
|
||||
Reference in New Issue
Block a user