default background estimation to Scott statistics
This commit is contained in:
@@ -446,9 +446,9 @@ def get_error(
|
||||
return_background=False,
|
||||
):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
standard deviation on this sub-image.
|
||||
Estimate background intensity level from either fitting the intensity histogram
|
||||
or by looking for the sub-image of smallest integrated intensity (no source assumption)
|
||||
and define the background on the image by the standard deviation on this sub-image.
|
||||
----------
|
||||
Inputs:
|
||||
data_array : numpy.ndarray
|
||||
@@ -468,7 +468,7 @@ def get_error(
|
||||
If 'auto', look for optimal binning and fit intensity histogram with au gaussian.
|
||||
If str or None, statistic rule to be used for the number of bins in counts/s.
|
||||
If int, number of bins for the counts/s histogram.
|
||||
If tuple, shape of the sub-image to look for. Must be odd.
|
||||
If tuple, shape of the sub-image of lowest intensity to look for.
|
||||
Defaults to None.
|
||||
subtract_error : float or bool, optional
|
||||
If float, factor to which the estimated background should be multiplied
|
||||
@@ -1801,8 +1801,6 @@ def rotate_data(data_array, error_array, data_mask, headers):
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
for the new orientation angle.
|
||||
"""
|
||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||
|
||||
old_center = np.array(data_array[0].shape) / 2
|
||||
shape = np.fix(np.array(data_array[0].shape) * np.sqrt(2.5)).astype(int)
|
||||
new_center = np.array(shape) / 2
|
||||
|
||||
Reference in New Issue
Block a user