revamp imagerie
|
Before Width: | Height: | Size: 1024 KiB |
BIN
data/IC5063_x3nl030/IR/IC5063_WFPC2_F606W.png
Normal file
|
After Width: | Height: | Size: 741 KiB |
|
Before Width: | Height: | Size: 566 KiB After Width: | Height: | Size: 684 KiB |
|
Before Width: | Height: | Size: 626 KiB After Width: | Height: | Size: 613 KiB |
|
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 79 KiB |
|
Before Width: | Height: | Size: 330 KiB After Width: | Height: | Size: 316 KiB |
|
Before Width: | Height: | Size: 270 KiB After Width: | Height: | Size: 256 KiB |
|
Before Width: | Height: | Size: 307 KiB After Width: | Height: | Size: 296 KiB |
|
Before Width: | Height: | Size: 351 KiB After Width: | Height: | Size: 327 KiB |
|
Before Width: | Height: | Size: 838 KiB After Width: | Height: | Size: 828 KiB |
|
Before Width: | Height: | Size: 854 KiB After Width: | Height: | Size: 843 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol.png
Normal file
|
After Width: | Height: | Size: 746 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_IQU.png
Normal file
|
After Width: | Height: | Size: 79 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_I_err.png
Normal file
|
After Width: | Height: | Size: 452 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_P.png
Normal file
|
After Width: | Height: | Size: 394 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_P_err.png
Normal file
|
After Width: | Height: | Size: 432 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_P_flux.png
Normal file
|
After Width: | Height: | Size: 459 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_SNRi.png
Normal file
|
After Width: | Height: | Size: 942 KiB |
BIN
plots/IC5063_x3nl030/IC5063_FOC_combine_FWHM020_pol_SNRp.png
Normal file
|
After Width: | Height: | Size: 957 KiB |
|
Before Width: | Height: | Size: 589 KiB After Width: | Height: | Size: 436 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010.png
Normal file
|
After Width: | Height: | Size: 556 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_IQU.png
Normal file
|
After Width: | Height: | Size: 73 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_I_err.png
Normal file
|
After Width: | Height: | Size: 279 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_P.png
Normal file
|
After Width: | Height: | Size: 256 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_P_err.png
Normal file
|
After Width: | Height: | Size: 274 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_P_flux.png
Normal file
|
After Width: | Height: | Size: 336 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_SNRi.png
Normal file
|
After Width: | Height: | Size: 517 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM010_SNRp.png
Normal file
|
After Width: | Height: | Size: 656 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020.png
Normal file
|
After Width: | Height: | Size: 526 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_IQU.png
Normal file
|
After Width: | Height: | Size: 68 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_I_err.png
Normal file
|
After Width: | Height: | Size: 338 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_P.png
Normal file
|
After Width: | Height: | Size: 303 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_P_err.png
Normal file
|
After Width: | Height: | Size: 337 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_P_flux.png
Normal file
|
After Width: | Height: | Size: 391 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_SNRi.png
Normal file
|
After Width: | Height: | Size: 618 KiB |
BIN
plots/MKN463_x2rp030/MRK463_FOC_combine_FWHM020_SNRp.png
Normal file
|
After Width: | Height: | Size: 936 KiB |
BIN
plots/NGC1068_x274020/NGC1068_Capetti_vs_us.png
Normal file
|
After Width: | Height: | Size: 630 KiB |
BIN
plots/NGC1068_x274020/NGC1068_FOC_analysis.png
Normal file
|
After Width: | Height: | Size: 166 KiB |
@@ -20,17 +20,17 @@ from astropy.wcs import WCS
|
||||
def main():
|
||||
##### User inputs
|
||||
## Input and output locations
|
||||
globals()['data_folder'] = "../data/NGC1068_x274020/"
|
||||
infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
||||
'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
||||
'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
||||
psf_file = 'NGC1068_f253m00.fits'
|
||||
globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
||||
# globals()['data_folder'] = "../data/NGC1068_x274020/"
|
||||
# infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
||||
# 'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
||||
# 'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
||||
## psf_file = 'NGC1068_f253m00.fits'
|
||||
# globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
||||
|
||||
# globals()['data_folder'] = "../data/IC5063_x3nl030/"
|
||||
# infiles = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
|
||||
globals()['data_folder'] = "../data/IC5063_x3nl030/"
|
||||
infiles = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
|
||||
# psf_file = 'IC5063_f502m00.fits'
|
||||
# globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
|
||||
globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
|
||||
|
||||
# globals()['data_folder'] = "../data/NGC1068_x14w010/"
|
||||
# infiles = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
|
||||
@@ -122,10 +122,10 @@ def main():
|
||||
crop = False #Crop to desired ROI
|
||||
final_display = False
|
||||
# Polarization map output
|
||||
figname = 'NGC1068_FOC' #target/intrument name
|
||||
figname = 'IC5063_FOC' #target/intrument name
|
||||
figtype = '_combine_FWHM020' #additionnal informations
|
||||
SNRp_cut = 5. #P measurments with SNR>3
|
||||
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
SNRp_cut = 3. #P measurments with SNR>3
|
||||
SNRi_cut = 60. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||
# if step_vec = 0 then all vectors are displayed at full length
|
||||
|
||||
@@ -176,13 +176,13 @@ def main():
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
||||
|
||||
|
||||
## Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate_stokes:
|
||||
alpha = headers[0]['orientat']
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, data_mask = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, -alpha, SNRi_cut=None)
|
||||
|
||||
|
||||
# Compute polarimetric parameters (polarization degree and angle).
|
||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||
|
||||
|
||||
127
src/lib/plots.py
@@ -271,7 +271,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
if display is None:
|
||||
# If no display selected, show intensity map
|
||||
vmin, vmax = 0., np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||
print("Total flux contour levels : ", levelsI)
|
||||
@@ -281,7 +281,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
# Display polarisation flux
|
||||
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
|
||||
vmin, vmax = 0., np.max(stkI.data[pf_mask]*convert_flux*pol.data[pf_mask])
|
||||
im = ax.imshow(stkI.data*convert_flux*pol.data, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(stkI.data*convert_flux*pol.data, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||
print("Polarized flux contour levels : ", levelsPf)
|
||||
@@ -290,24 +290,24 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
elif display.lower() in ['p','pol','pol_deg']:
|
||||
# Display polarization degree map
|
||||
vmin, vmax = 0., 100.
|
||||
im = ax.imshow(pol.data*100., vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(pol.data*100., vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P$ [%]")
|
||||
elif display.lower() in ['s_p','pol_err','pol_deg_err']:
|
||||
# Display polarization degree error map
|
||||
vmin, vmax = 0., 10.
|
||||
p_err = deepcopy(pol_err.data)
|
||||
p_err[p_err > vmax/100.] = np.nan
|
||||
im = ax.imshow(p_err*100., vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(p_err*100., vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_P$ [%]")
|
||||
elif display.lower() in ['s_i','i_err']:
|
||||
# Display intensity error map
|
||||
vmin, vmax = 0., np.max(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux)
|
||||
im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
elif display.lower() in ['snr','snri']:
|
||||
# Display I_stokes signal-to-noise map
|
||||
vmin, vmax = 0., np.max(SNRi[SNRi > 0.])
|
||||
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$I_{Stokes}/\sigma_{I}$")
|
||||
levelsSNRi = np.linspace(SNRi_cut, vmax*0.99, 10)
|
||||
print("SNRi contour levels : ", levelsSNRi)
|
||||
@@ -316,7 +316,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
elif display.lower() in ['snrp']:
|
||||
# Display polarization degree signal-to-noise map
|
||||
vmin, vmax = SNRp_cut, np.max(SNRp[SNRp > 0.])
|
||||
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P/\sigma_{P}$")
|
||||
levelsSNRp = np.linspace(SNRp_cut, vmax*0.99, 10)
|
||||
print("SNRp contour levels : ", levelsSNRp)
|
||||
@@ -325,7 +325,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
||||
else:
|
||||
# Defaults to intensity map
|
||||
vmin, vmax = 0., np.max(stkI.data[stkI.data > 0.]*convert_flux*2.)
|
||||
im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
|
||||
|
||||
if (display is None) or not(display.lower() in ['default']):
|
||||
@@ -398,7 +398,7 @@ class align_maps(object):
|
||||
elif self.wcs_map.naxis == 3:
|
||||
self.wcs_map = WCS(self.map[0],naxis=[1,2]).deepcopy()
|
||||
self.map[0].data = self.map[0].data[1]
|
||||
|
||||
|
||||
self.wcs_other = WCS(self.other_map[0]).deepcopy()
|
||||
if self.wcs_other.naxis == 4:
|
||||
self.wcs_other = WCS(self.other_map[0],naxis=[1,2]).deepcopy()
|
||||
@@ -406,7 +406,7 @@ class align_maps(object):
|
||||
elif self.wcs_other.naxis == 3:
|
||||
self.wcs_other = WCS(self.other_map[0],naxis=[1,2]).deepcopy()
|
||||
self.other_map[0].data = self.other_map[0].data[1]
|
||||
|
||||
|
||||
try:
|
||||
convert_flux = self.map[0].header['photflam']
|
||||
except KeyError:
|
||||
@@ -415,7 +415,7 @@ class align_maps(object):
|
||||
other_convert = self.other_map[0].header['photflam']
|
||||
except KeyError:
|
||||
other_convert = 1.
|
||||
|
||||
|
||||
#Get data
|
||||
data = self.map[0].data
|
||||
other_data = self.other_map[0].data
|
||||
@@ -427,13 +427,13 @@ class align_maps(object):
|
||||
self.ax1.set_facecolor('k')
|
||||
|
||||
vmin, vmax = 0., np.max(data[data > 0.]*convert_flux)
|
||||
im1 = self.ax1.imshow(data*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im1 = self.ax1.imshow(data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
|
||||
fontprops = fm.FontProperties(size=16)
|
||||
px_size = self.wcs_map.wcs.get_cdelt()[0]*3600.
|
||||
px_sc = AnchoredSizeBar(self.ax1.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
|
||||
self.ax1.add_artist(px_sc)
|
||||
|
||||
|
||||
try:
|
||||
north_dir1 = AnchoredDirectionArrows(self.ax1.transAxes, "E", "N", length=-0.08, fontsize=0.025, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, back_length=0., head_length=10., head_width=10., angle=-self.map[0].header['orientat'], color='white', text_props={'ec': None, 'fc': 'w', 'alpha': 1, 'lw': 0.4}, arrow_props={'ec': None,'fc':'w','alpha': 1,'lw': 1})
|
||||
self.ax1.add_artist(north_dir1)
|
||||
@@ -454,14 +454,14 @@ class align_maps(object):
|
||||
test = kwargs[key]
|
||||
except KeyError:
|
||||
for key_i, val_i in value:
|
||||
kwargs[key_i] = val_i
|
||||
im2 = self.ax2.imshow(other_data*other_convert, aspect='auto', **kwargs)
|
||||
kwargs[key_i] = val_i
|
||||
im2 = self.ax2.imshow(other_data*other_convert, aspect='equal', **kwargs)
|
||||
|
||||
fontprops = fm.FontProperties(size=16)
|
||||
px_size = self.wcs_other.wcs.get_cdelt()[0]*3600.
|
||||
px_sc = AnchoredSizeBar(self.ax2.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
|
||||
self.ax2.add_artist(px_sc)
|
||||
|
||||
|
||||
try:
|
||||
north_dir2 = AnchoredDirectionArrows(self.ax2.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.other_map[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
|
||||
self.ax2.add_artist(north_dir2)
|
||||
@@ -477,7 +477,7 @@ class align_maps(object):
|
||||
self.bapply = Button(self.axapply, 'Apply reference')
|
||||
self.axreset = self.fig.add_axes([0.60, 0.01, 0.1, 0.04])
|
||||
self.breset = Button(self.axreset, 'Leave as is')
|
||||
|
||||
|
||||
def get_aligned_wcs(self):
|
||||
return self.wcs_map, self.wcs_other
|
||||
|
||||
@@ -489,14 +489,14 @@ class align_maps(object):
|
||||
|
||||
self.cr_map.set(data=[x,y])
|
||||
self.fig.canvas.draw_idle()
|
||||
|
||||
|
||||
if (event.inaxes is not None) and (event.inaxes == self.ax2):
|
||||
x = event.xdata
|
||||
y = event.ydata
|
||||
|
||||
self.cr_other.set(data=[x,y])
|
||||
self.fig.canvas.draw_idle()
|
||||
|
||||
|
||||
def reset_align(self, event):
|
||||
self.wcs_map.wcs.crpix = WCS(self.map[0].header).wcs.crpix[:2]
|
||||
self.wcs_other.wcs.crpix = WCS(self.other_map[0].header).wcs.crpix[:2]
|
||||
@@ -504,7 +504,7 @@ class align_maps(object):
|
||||
|
||||
if self.aligned:
|
||||
plt.close()
|
||||
|
||||
|
||||
self.aligned = True
|
||||
|
||||
def apply_align(self, event):
|
||||
@@ -515,13 +515,13 @@ class align_maps(object):
|
||||
|
||||
if self.aligned:
|
||||
plt.close()
|
||||
|
||||
|
||||
self.aligned = True
|
||||
|
||||
|
||||
def on_close_align(self, event):
|
||||
self.aligned = True
|
||||
#print(self.get_aligned_wcs())
|
||||
|
||||
|
||||
def align(self):
|
||||
self.fig.canvas.draw()
|
||||
self.fig.canvas.mpl_connect('button_press_event', self.onclick_ref)
|
||||
@@ -547,7 +547,7 @@ class overplot_radio(align_maps):
|
||||
pol = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_debiased' for i in range(len(self.Stokes_UV))])]
|
||||
pol_err = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_err' for i in range(len(self.Stokes_UV))])]
|
||||
pang = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_ang' for i in range(len(self.Stokes_UV))])]
|
||||
|
||||
|
||||
other_data = self.other_map[0].data
|
||||
other_convert = 1.
|
||||
other_unit = self.other_map[0].header['bunit']
|
||||
@@ -555,7 +555,7 @@ class overplot_radio(align_maps):
|
||||
other_unit = r"mJy/Beam"
|
||||
other_convert = 1e3
|
||||
other_freq = self.other_map[0].header['crval3']
|
||||
|
||||
|
||||
convert_flux = self.Stokes_UV[0].header['photflam']
|
||||
|
||||
#Compute SNR and apply cuts
|
||||
@@ -575,7 +575,7 @@ class overplot_radio(align_maps):
|
||||
|
||||
#Display UV intensity map with polarization vectors
|
||||
vmin, vmax = 0., np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
im = self.ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||
im = self.ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
|
||||
cbar_ax = self.fig2.add_axes([0.95, 0.12, 0.01, 0.75])
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
|
||||
@@ -600,12 +600,12 @@ class overplot_radio(align_maps):
|
||||
north_dir = AnchoredDirectionArrows(self.ax.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.Stokes_UV[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
|
||||
self.ax.add_artist(north_dir)
|
||||
|
||||
|
||||
|
||||
if not(savename is None):
|
||||
self.fig2.savefig(savename,bbox_inches='tight',dpi=200)
|
||||
|
||||
self.fig2.canvas.draw()
|
||||
|
||||
|
||||
def plot(self, levels, SNRp_cut=3., SNRi_cut=30., savename=None) -> None:
|
||||
self.align()
|
||||
if self.aligned:
|
||||
@@ -628,9 +628,9 @@ class overplot_pol(align_maps):
|
||||
pol = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_debiased' for i in range(len(self.Stokes_UV))])]
|
||||
pol_err = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_err' for i in range(len(self.Stokes_UV))])]
|
||||
pang = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_ang' for i in range(len(self.Stokes_UV))])]
|
||||
|
||||
|
||||
convert_flux = self.Stokes_UV[0].header['photflam']
|
||||
|
||||
|
||||
other_data = self.other_map[0].data
|
||||
try:
|
||||
other_convert = self.other_map[0].header['photflam']
|
||||
@@ -654,9 +654,9 @@ class overplot_pol(align_maps):
|
||||
|
||||
#Display Stokes I as contours
|
||||
levels_stkI = np.rint(np.linspace(10,99,10))/100.*np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||
cont_stkI = self.ax.contour(stkI.data*convert_flux, transform=self.ax.get_transform(self.wcs_UV), levels=levels_stkI, colors='grey')
|
||||
self.ax.clabel(cont_stkI, inline=True, fontsize=8)
|
||||
|
||||
cont_stkI = self.ax.contour(stkI.data*convert_flux, transform=self.ax.get_transform(self.wcs_UV), levels=levels_stkI, colors='grey', alpha=0.)
|
||||
#self.ax.clabel(cont_stkI, inline=True, fontsize=8)
|
||||
|
||||
self.ax.autoscale(False)
|
||||
|
||||
#Display full size polarization vectors
|
||||
@@ -673,27 +673,27 @@ class overplot_pol(align_maps):
|
||||
test = kwargs[key]
|
||||
except KeyError:
|
||||
for key_i, val_i in value:
|
||||
kwargs[key_i] = val_i
|
||||
kwargs[key_i] = val_i
|
||||
im = self.ax.imshow(other_data*other_convert, transform=self.ax.get_transform(self.wcs_other), alpha=1., **kwargs)
|
||||
cbar_ax = self.fig2.add_axes([0.95, 0.12, 0.01, 0.75])
|
||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
|
||||
#Display pixel scale and North direction
|
||||
fontprops = fm.FontProperties(size=16)
|
||||
px_size = self.wcs_other.wcs.get_cdelt()[0]*3600.
|
||||
px_size = self.wcs_UV.wcs.get_cdelt()[0]*3600.
|
||||
px_sc = AnchoredSizeBar(self.ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
|
||||
self.ax.add_artist(px_sc)
|
||||
north_dir = AnchoredDirectionArrows(self.ax.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.Stokes_UV[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
|
||||
self.ax.add_artist(north_dir)
|
||||
|
||||
|
||||
|
||||
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", title="{0:s} overplotted with polarization vectors and Stokes I contours from HST/FOC".format(obj))
|
||||
|
||||
if not(savename is None):
|
||||
self.fig2.savefig(savename,bbox_inches='tight',dpi=200)
|
||||
|
||||
self.fig2.canvas.draw()
|
||||
|
||||
|
||||
def plot(self, SNRp_cut=3., SNRi_cut=30., savename=None, **kwargs) -> None:
|
||||
self.align()
|
||||
if self.aligned:
|
||||
@@ -711,7 +711,7 @@ class crop_map(object):
|
||||
self.hdul = hdul
|
||||
self.header = deepcopy(self.hdul[0].header)
|
||||
self.wcs = WCS(self.header).deepcopy()
|
||||
|
||||
|
||||
self.data = deepcopy(self.hdul[0].data)
|
||||
try:
|
||||
self.convert_flux = self.header['photflam']
|
||||
@@ -758,16 +758,16 @@ class crop_map(object):
|
||||
wcs = self.wcs
|
||||
if convert_flux is None:
|
||||
convert_flux = self.convert_flux
|
||||
|
||||
|
||||
vmin, vmax = 0., np.max(data[data > 0.]*convert_flux)
|
||||
if hasattr(self, 'im'):
|
||||
self.im.remove()
|
||||
self.im = self.ax.imshow(data*convert_flux, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=self.mask_alpha, origin='lower')
|
||||
self.im = self.ax.imshow(data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=self.mask_alpha, origin='lower')
|
||||
if hasattr(self, 'cr'):
|
||||
self.cr[0].set_data(*wcs.wcs.crpix)
|
||||
else:
|
||||
self.cr = self.ax.plot(*wcs.wcs.crpix, 'r+')
|
||||
self.fig.canvas.draw_idle()
|
||||
self.fig.canvas.draw_idle()
|
||||
return self.im
|
||||
|
||||
@property
|
||||
@@ -811,10 +811,10 @@ class crop_map(object):
|
||||
header = self.header
|
||||
data = self.data
|
||||
wcs = self.wcs
|
||||
|
||||
|
||||
vertex = self.RSextent.astype(int)
|
||||
shape = vertex[1::2] - vertex[0::2]
|
||||
|
||||
|
||||
extent = np.array(self.im.get_extent())
|
||||
shape_im = extent[1::2] - extent[0::2]
|
||||
if (shape_im.astype(int) != shape).any() and (self.RSextent != self.extent).any():
|
||||
@@ -827,7 +827,7 @@ class crop_map(object):
|
||||
else:
|
||||
self.wcs_crop.wcs.crval = wcs.wcs_pix2world([self.RScenter],1)[0]
|
||||
self.wcs_crop.wcs.crpix = self.RScenter-self.RSextent[::2]
|
||||
|
||||
|
||||
# Crop dataset
|
||||
self.data_crop = deepcopy(data[vertex[2]:vertex[3], vertex[0]:vertex[1]])
|
||||
|
||||
@@ -853,7 +853,7 @@ class crop_map(object):
|
||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
|
||||
drawtype='box', button=[1], interactive=True)
|
||||
self.fig.canvas.draw_idle()
|
||||
|
||||
|
||||
def on_close(self, event) -> None:
|
||||
if not hasattr(self, 'hdul_crop'):
|
||||
self.hdul_crop = self.hdul
|
||||
@@ -890,7 +890,7 @@ class crop_Stokes(crop_map):
|
||||
hdul = self.hdul
|
||||
data = self.data
|
||||
wcs = self.wcs
|
||||
|
||||
|
||||
vertex = self.RSextent.astype(int)
|
||||
shape = vertex[1::2] - vertex[0::2]
|
||||
|
||||
@@ -907,7 +907,7 @@ class crop_Stokes(crop_map):
|
||||
else:
|
||||
self.wcs_crop.wcs.crval = wcs.wcs_pix2world([self.RScenter],1)[0]
|
||||
self.wcs_crop.wcs.crpix = self.RScenter-self.RSextent[::2]
|
||||
|
||||
|
||||
# Crop dataset
|
||||
for dataset in self.hdul_crop:
|
||||
if dataset.header['datatype']=='IQU_cov_matrix':
|
||||
@@ -941,7 +941,7 @@ class crop_Stokes(crop_map):
|
||||
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
|
||||
drawtype='box', button=[1], interactive=True)
|
||||
self.fig.canvas.draw_idle()
|
||||
|
||||
|
||||
@property
|
||||
def data_mask(self):
|
||||
return self.hdul_crop[-1].data
|
||||
@@ -967,13 +967,13 @@ class image_lasso_selector:
|
||||
self.ax = ax
|
||||
self.mask_alpha = 0.1
|
||||
self.embedded = True
|
||||
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='auto', cmap='inferno',alpha=self.mask_alpha)
|
||||
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
|
||||
plt.ion()
|
||||
|
||||
|
||||
lineprops = {'color': 'grey', 'linewidth': 1, 'alpha': 0.8}
|
||||
self.lasso = LassoSelector(self.ax, self.onselect,props=lineprops, useblit=False)
|
||||
self.lasso.set_visible(True)
|
||||
|
||||
|
||||
pix_x = np.arange(self.img.shape[0])
|
||||
pix_y = np.arange(self.img.shape[1])
|
||||
xv, yv = np.meshgrid(pix_y,pix_x)
|
||||
@@ -993,10 +993,10 @@ class image_lasso_selector:
|
||||
p = Path(verts)
|
||||
self.indices = p.contains_points(self.pix, radius=0).reshape(self.img.shape[:2])
|
||||
self.update_mask()
|
||||
|
||||
|
||||
def update_mask(self):
|
||||
self.displayed.remove()
|
||||
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='auto', cmap='inferno',alpha=self.mask_alpha)
|
||||
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
|
||||
array = self.displayed.get_array().data
|
||||
|
||||
self.mask = np.zeros(self.img.shape[:2],dtype=bool)
|
||||
@@ -1040,14 +1040,14 @@ class pol_map(object):
|
||||
self.ax = self.fig.add_subplot(111,projection=self.wcs)
|
||||
self.ax_cosmetics()
|
||||
self.cbar_ax = self.fig.add_axes([0.925, 0.12, 0.01, 0.75])
|
||||
|
||||
|
||||
#Display selected data (Default to total flux)
|
||||
self.display()
|
||||
#Display polarization vectors in SNR_cut
|
||||
self.pol_vector()
|
||||
#Display integrated values in ROI
|
||||
self.pol_int()
|
||||
|
||||
|
||||
#Set axes for sliders (SNRp_cut, SNRi_cut)
|
||||
ax_I_cut = self.fig.add_axes([0.125, 0.080, 0.35, 0.01])
|
||||
ax_P_cut = self.fig.add_axes([0.125, 0.055, 0.35, 0.01])
|
||||
@@ -1121,7 +1121,7 @@ class pol_map(object):
|
||||
b_crop = Button(ax_crop,"Crop")
|
||||
self.cropped = False
|
||||
b_crop_reset = Button(ax_crop_reset,"Reset")
|
||||
|
||||
|
||||
def crop(event):
|
||||
if self.cropped:
|
||||
self.cropped = False
|
||||
@@ -1284,7 +1284,7 @@ class pol_map(object):
|
||||
b_snrp.on_clicked(d_snrp)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
@property
|
||||
def wcs(self):
|
||||
return deepcopy(WCS(self.Stokes[0].header))
|
||||
@@ -1312,7 +1312,7 @@ class pol_map(object):
|
||||
@property
|
||||
def data_mask(self):
|
||||
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Data_mask' for i in range(len(self.Stokes))])].data
|
||||
|
||||
|
||||
def set_data_mask(self, mask):
|
||||
self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Data_mask' for i in range(len(self.Stokes))])].data = mask.astype(float)
|
||||
|
||||
@@ -1337,7 +1337,7 @@ class pol_map(object):
|
||||
ax.coords[1].set_axislabel_position('l')
|
||||
ax.coords[1].set_ticklabel_position('l')
|
||||
ax.axis('equal')
|
||||
|
||||
|
||||
#Display scales and orientation
|
||||
fontprops = fm.FontProperties(size=14)
|
||||
px_size = self.wcs.wcs.cdelt[0]*3600.
|
||||
@@ -1357,7 +1357,7 @@ class pol_map(object):
|
||||
def display(self, fig=None, ax=None):
|
||||
if self.display_selection is None:
|
||||
self.display_selection = "total_flux"
|
||||
|
||||
|
||||
if self.display_selection.lower() in ['total_flux']:
|
||||
self.data = self.I*self.convert_flux
|
||||
vmin, vmax = 0., np.max(self.data[self.data > 0.])
|
||||
@@ -1390,12 +1390,12 @@ class pol_map(object):
|
||||
ax = self.ax
|
||||
if hasattr(self, 'im'):
|
||||
self.im.remove()
|
||||
self.im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno')
|
||||
self.im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno')
|
||||
self.cbar = plt.colorbar(self.im, cax=self.cbar_ax, label=label)
|
||||
fig.canvas.draw_idle()
|
||||
return self.im
|
||||
else:
|
||||
im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno')
|
||||
im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno')
|
||||
ax.set_xlim(0,self.data.shape[1])
|
||||
ax.set_ylim(0,self.data.shape[0])
|
||||
plt.colorbar(im, pad=0.025, aspect=80, label=label)
|
||||
@@ -1419,7 +1419,7 @@ class pol_map(object):
|
||||
else:
|
||||
ax.quiver(X, Y, XY_U, XY_V, units='xy', scale=0.5, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, color='white')
|
||||
fig.canvas.draw_idle()
|
||||
|
||||
|
||||
def pol_int(self, fig=None, ax=None):
|
||||
if self.region is None:
|
||||
n_pix = self.I.size
|
||||
@@ -1475,4 +1475,3 @@ class pol_map(object):
|
||||
if not self.region is None:
|
||||
ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
|
||||
fig.canvas.draw_idle()
|
||||
|
||||
@@ -482,7 +482,7 @@ def get_error(data_array, headers, error_array=None, data_mask=None, sub_shape=N
|
||||
err_flat = data_array[i]*0.03
|
||||
|
||||
error_array[i] = np.sqrt(error_array[i]**2 + error_bkg[i]**2 + err_wav**2 + err_psf**2 + err_flat**2)
|
||||
|
||||
|
||||
background[i] = sub_image.sum()
|
||||
if (data_array[i] < 0.).any():
|
||||
print(data_array[i])
|
||||
@@ -808,7 +808,7 @@ def align_data(data_array, headers, error_array=None, upsample_factor=1.,
|
||||
|
||||
shifts.append(shift)
|
||||
errors.append(error)
|
||||
|
||||
|
||||
shifts = np.array(shifts)
|
||||
errors = np.array(errors)
|
||||
|
||||
@@ -818,7 +818,7 @@ def align_data(data_array, headers, error_array=None, upsample_factor=1.,
|
||||
for i in range(len(headers_wcs)):
|
||||
headers_wcs[i].wcs.crpix = new_crpix[0]
|
||||
headers[i].update(headers_wcs[i].to_header())
|
||||
|
||||
|
||||
data_mask = rescaled_mask.all(axis=0)
|
||||
data_array, error_array, data_mask, headers = crop_array(rescaled_image, headers, rescaled_error, data_mask)
|
||||
|
||||
@@ -926,7 +926,7 @@ def smooth_data(data_array, error_array, data_mask, headers, FWHM=1.,
|
||||
|
||||
else:
|
||||
raise ValueError("{} is not a valid smoothing option".format(smoothing))
|
||||
|
||||
|
||||
return smoothed, error
|
||||
|
||||
|
||||
@@ -1039,7 +1039,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
||||
err60 = np.sqrt(np.sum(err60_array**2,axis=0))
|
||||
err120 = np.sqrt(np.sum(err120_array**2,axis=0))
|
||||
polerr_array = np.array([err0, err60, err120])
|
||||
|
||||
|
||||
# Update headers
|
||||
for header in headers:
|
||||
if header['filtnam1']=='POL0':
|
||||
@@ -1186,12 +1186,12 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
Q_stokes = np.zeros(pol_array[0].shape)
|
||||
U_stokes = np.zeros(pol_array[0].shape)
|
||||
Stokes_cov = np.zeros((3,3,I_stokes.shape[0],I_stokes.shape[1]))
|
||||
|
||||
|
||||
for i in range(I_stokes.shape[0]):
|
||||
for j in range(I_stokes.shape[1]):
|
||||
I_stokes[i,j], Q_stokes[i,j], U_stokes[i,j] = np.dot(coeff_stokes, pol_flux[:,i,j]).T
|
||||
Stokes_cov[:,:,i,j] = np.dot(coeff_stokes, np.dot(pol_cov[:,:,i,j], coeff_stokes.T))
|
||||
|
||||
|
||||
mask = (Q_stokes**2 + U_stokes**2) > I_stokes**2
|
||||
if mask.any():
|
||||
print("WARNING : found {0:d} pixels for which I_pol > I_stokes".format(I_stokes[mask].size))
|
||||
@@ -1201,17 +1201,17 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
dI_dtheta2 = 2.*pol_eff[1]/A*(pol_eff[0]*np.cos(-2.*theta[0]+2.*theta[1])*(pol_flux[2]-I_stokes) - pol_eff[2]*np.cos(-2.*theta[1]+2.*theta[2])*(pol_flux[0]-I_stokes))
|
||||
dI_dtheta3 = 2.*pol_eff[2]/A*(pol_eff[1]*np.cos(-2.*theta[1]+2.*theta[2])*(pol_flux[0]-I_stokes) - pol_eff[0]*np.cos(-2.*theta[2]+2.*theta[0])*(pol_flux[1]-I_stokes))
|
||||
dI_dtheta = np.array([dI_dtheta1, dI_dtheta2, dI_dtheta3])
|
||||
|
||||
|
||||
dQ_dtheta1 = 2.*pol_eff[0]/A*(np.cos(2.*theta[0])*(pol_flux[1]-pol_flux[2]) - (pol_eff[2]*np.cos(-2.*theta[2]+2.*theta[0]) - pol_eff[1]*np.cos(-2.*theta[0]+2.*theta[1]))*Q_stokes)
|
||||
dQ_dtheta2 = 2.*pol_eff[1]/A*(np.cos(2.*theta[1])*(pol_flux[2]-pol_flux[0]) - (pol_eff[0]*np.cos(-2.*theta[0]+2.*theta[1]) - pol_eff[2]*np.cos(-2.*theta[1]+2.*theta[2]))*Q_stokes)
|
||||
dQ_dtheta3 = 2.*pol_eff[2]/A*(np.cos(2.*theta[2])*(pol_flux[0]-pol_flux[1]) - (pol_eff[1]*np.cos(-2.*theta[1]+2.*theta[2]) - pol_eff[0]*np.cos(-2.*theta[2]+2.*theta[0]))*Q_stokes)
|
||||
dQ_dtheta = np.array([dQ_dtheta1, dQ_dtheta2, dQ_dtheta3])
|
||||
|
||||
|
||||
dU_dtheta1 = 2.*pol_eff[0]/A*(np.sin(2.*theta[0])*(pol_flux[1]-pol_flux[2]) - (pol_eff[2]*np.cos(-2.*theta[2]+2.*theta[0]) - pol_eff[1]*np.cos(-2.*theta[0]+2.*theta[1]))*U_stokes)
|
||||
dU_dtheta2 = 2.*pol_eff[1]/A*(np.sin(2.*theta[1])*(pol_flux[2]-pol_flux[0]) - (pol_eff[0]*np.cos(-2.*theta[0]+2.*theta[1]) - pol_eff[2]*np.cos(-2.*theta[1]+2.*theta[2]))*U_stokes)
|
||||
dU_dtheta3 = 2.*pol_eff[2]/A*(np.sin(2.*theta[2])*(pol_flux[0]-pol_flux[1]) - (pol_eff[1]*np.cos(-2.*theta[1]+2.*theta[2]) - pol_eff[0]*np.cos(-2.*theta[2]+2.*theta[0]))*U_stokes)
|
||||
dU_dtheta = np.array([dU_dtheta1, dU_dtheta2, dU_dtheta3])
|
||||
|
||||
|
||||
# Compute the uncertainty associated with the polarizers' orientation (see Kishimoto 1999)
|
||||
s_I2_axis = np.sum([dI_dtheta[i]**2 * sigma_theta[i]**2 for i in range(len(sigma_theta))],axis=0)
|
||||
s_Q2_axis = np.sum([dQ_dtheta[i]**2 * sigma_theta[i]**2 for i in range(len(sigma_theta))],axis=0)
|
||||
@@ -1221,7 +1221,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
Stokes_cov[0,0] += s_I2_axis
|
||||
Stokes_cov[1,1] += s_Q2_axis
|
||||
Stokes_cov[2,2] += s_U2_axis
|
||||
|
||||
|
||||
if not(FWHM is None) and (smoothing.lower() in ['weighted_gaussian_after','weight_gauss_after','gaussian_after','gauss_after']):
|
||||
smoothing = smoothing.lower()[:-6]
|
||||
Stokes_array = np.array([I_stokes, Q_stokes, U_stokes])
|
||||
@@ -1233,7 +1233,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
|
||||
I_stokes, Q_stokes, U_stokes = Stokes_array
|
||||
Stokes_cov[0,0], Stokes_cov[1,1], Stokes_cov[2,2] = Stokes_error**2
|
||||
|
||||
|
||||
#Compute integrated values for P, PA before any rotation
|
||||
mask = np.logical_and(data_mask.astype(bool), (I_stokes > 0.))
|
||||
n_pix = I_stokes[mask].size
|
||||
@@ -1419,11 +1419,11 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
mrot = np.array([[1., 0., 0.],
|
||||
[0., np.cos(2.*alpha), np.sin(2.*alpha)],
|
||||
[0, -np.sin(2.*alpha), np.cos(2.*alpha)]])
|
||||
|
||||
|
||||
old_center = np.array(I_stokes.shape)/2
|
||||
shape = np.fix(np.array(I_stokes.shape)*np.sqrt(2.5)).astype(int)
|
||||
new_center = np.array(shape)/2
|
||||
|
||||
|
||||
I_stokes = zeropad(I_stokes, shape)
|
||||
Q_stokes = zeropad(Q_stokes, shape)
|
||||
U_stokes = zeropad(U_stokes, shape)
|
||||
@@ -1433,7 +1433,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
new_Q_stokes = np.zeros(shape)
|
||||
new_U_stokes = np.zeros(shape)
|
||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2],*shape))
|
||||
|
||||
|
||||
for i in range(shape[0]):
|
||||
for j in range(shape[1]):
|
||||
new_I_stokes[i,j], new_Q_stokes[i,j], new_U_stokes[i,j] = np.dot(mrot, np.array([I_stokes[i,j], Q_stokes[i,j], U_stokes[i,j]])).T
|
||||
@@ -1554,7 +1554,7 @@ def rotate_data(data_array, error_array, data_mask, headers, ang):
|
||||
old_center = np.array(data_array[0].shape)/2
|
||||
shape = np.fix(np.array(data_array[0].shape)*np.sqrt(2.5)).astype(int)
|
||||
new_center = np.array(shape)/2
|
||||
|
||||
|
||||
data_array = zeropad(data_array, [data_array.shape[0],*shape])
|
||||
error_array = zeropad(error_array, [error_array.shape[0],*shape])
|
||||
data_mask = zeropad(data_mask, shape)
|
||||
|
||||
@@ -16,30 +16,30 @@ Stokes_IR = fits.open("../data/IC5063_x3nl030/IR/u2e65g01t_c0f_rot.fits")
|
||||
|
||||
levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
|
||||
|
||||
#levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
|
||||
levels18GHz = levelsMorganti*0.28*1e-3
|
||||
A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
|
||||
##levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
|
||||
#levels18GHz = levelsMorganti*0.28*1e-3
|
||||
#A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
#A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
|
||||
|
||||
#levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
|
||||
levels24GHz = levelsMorganti*0.46*1e-3
|
||||
B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
|
||||
|
||||
levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
|
||||
C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
|
||||
|
||||
levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
|
||||
D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
|
||||
|
||||
levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
|
||||
E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
|
||||
|
||||
F = overplot_pol(Stokes_UV, Stokes_S2)
|
||||
F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/S2_overplot_forced.png', norm=LogNorm(vmin=5e-20,vmax=5e-18))
|
||||
##levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
|
||||
#levels24GHz = levelsMorganti*0.46*1e-3
|
||||
#B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
#B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
|
||||
#
|
||||
#levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
|
||||
#C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
#C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
|
||||
#
|
||||
#levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
|
||||
#D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
#D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
|
||||
#
|
||||
#levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
|
||||
#E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
#E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
|
||||
#
|
||||
#F = overplot_pol(Stokes_UV, Stokes_S2)
|
||||
#F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/S2_overplot_forced.png', norm=LogNorm(vmin=5e-20,vmax=5e-18))
|
||||
|
||||
G = overplot_pol(Stokes_UV, Stokes_IR, norm=LogNorm(vmin=1e-17,vmax=5e-15), cmap='inferno_r')
|
||||
G.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/IR_overplot_forced.png', norm=LogNorm(vmin=1e-17,vmax=5e-15), cmap='inferno_r')
|
||||
G.plot(SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/IR_overplot_forced.png', norm=LogNorm(vmin=1e-17,vmax=5e-15), cmap='inferno_r')
|
||||
|
||||