Update background.py
This commit is contained in:
@@ -251,23 +251,13 @@ def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, save
|
|||||||
weights = 1 / chi2**2
|
weights = 1 / chi2**2
|
||||||
weights /= weights.sum()
|
weights /= weights.sum()
|
||||||
|
|
||||||
|
bkg = np.sum(weights*(coeff[:, 1]+np.abs(coeff[:, 2]) * subtract_error))
|
||||||
bkg = np.sum(weights*(coeff[:, 1]+np.abs(coeff[:, 2]) * 0.01)) # why not just use 0.01
|
|
||||||
|
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
# n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
# if subtract_error > 0:
|
|
||||||
# n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
# n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
|
||||||
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
if subtract_error > 0:
|
if np.abs(subtract_error) > 0:
|
||||||
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
@@ -366,22 +356,13 @@ def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, dis
|
|||||||
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
|
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
|
||||||
coeff.append(popt)
|
coeff.append(popt)
|
||||||
|
|
||||||
bkg = popt[1]+np.abs(popt[2]) * 0.01 # why not just use 0.01
|
bkg = popt[1] + np.abs(popt[2]) * subtract_error
|
||||||
|
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
# n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
# if subtract_error > 0:
|
|
||||||
# n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
# n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
|
||||||
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
if subtract_error > 0:
|
if np.abs(subtract_error) > 0:
|
||||||
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
@@ -469,21 +450,13 @@ def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True
|
|||||||
sub_image = image[minima[0] : minima[0] + sub_shape[0], minima[1] : minima[1] + sub_shape[1]]
|
sub_image = image[minima[0] : minima[0] + sub_shape[0], minima[1] : minima[1] + sub_shape[1]]
|
||||||
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||||
|
|
||||||
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*0.01 if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||||
error_bkg[i] *= bkg
|
error_bkg[i] *= bkg
|
||||||
|
|
||||||
# n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
|
||||||
|
|
||||||
# Substract background
|
|
||||||
# if subtract_error > 0.:
|
|
||||||
# n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
|
||||||
# n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
|
||||||
|
|
||||||
|
|
||||||
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
std_bkg[i] = image[np.abs(image - bkg) / bkg < 1.0].std()
|
||||||
background[i] = bkg
|
background[i] = bkg
|
||||||
|
|
||||||
if subtract_error > 0:
|
if np.abs(subtract_error) > 0:
|
||||||
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
n_data_array, n_error_array, background, error_bkg = subtract_bkg(n_data_array, n_error_array, mask, background, error_bkg)
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
|
|||||||
Reference in New Issue
Block a user