From a4e8f51c50b5a08a04bc0665ceafe56fd22fa25c Mon Sep 17 00:00:00 2001 From: sugar_jo <140659696+sugar-joh@users.noreply.github.com> Date: Sun, 30 Jun 2024 11:06:26 +0800 Subject: [PATCH] Update reduction.py --- package/lib/reduction.py | 34 +--------------------------------- 1 file changed, 1 insertion(+), 33 deletions(-) diff --git a/package/lib/reduction.py b/package/lib/reduction.py index 58aa0bb..055220d 100755 --- a/package/lib/reduction.py +++ b/package/lib/reduction.py @@ -1587,36 +1587,4 @@ def rotate_data(data_array, error_array, data_mask, headers, ang): new_headers.append(new_header) globals()['theta'] = globals()["theta"] - alpha - return new_data_array, new_error_array, new_data_mask, new_headers - -def adaptive_binning(I_stokes, Q_stokes, U_stokes, Stokes_cov): - shape = I_stokes.shape - - assert shape[0] == shape[1], "Only square images are supported" - assert shape[0] % 2 == 0, "Image size must be a power of 2" - - n = int(np.log2(shape[0])) - bin_map = np.zeros(shape) - bin_num = 0 - - for level in range(n): - grid_size = 2**level - temp_I = I_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) - temp_Q = Q_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) - temp_U = U_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) - temp_cov = Stokes_cov.reshape(3, 3, int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(3).sum(4) - temp_bin_map = bin_map.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) - - temp_P = (temp_Q**2 + temp_U**2)**0.5 / temp_I - temp_P_err = (1 / temp_I) * np.sqrt((temp_Q**2 * temp_cov[1,1,:,:] + temp_U**2 * temp_cov[2,2,:,:] + 2. * temp_Q * temp_U * temp_cov[1,2,:,:]) / (temp_Q**2 + temp_U**2) + \ - ((temp_Q / temp_I)**2 + (temp_U / temp_I)**2) * temp_cov[0,0,:,:] - \ - 2. * (temp_Q / temp_I) * temp_cov[0,1,:,:] - \ - 2. * (temp_U / temp_I) * temp_cov[0,2,:,:]) - - for i in range(int(shape[0]/grid_size)): - for j in range(int(shape[1]/grid_size)): - if (temp_P[i,j] / temp_P_err[i,j] > 3) and (temp_bin_map[i,j] == 0): # the default criterion is 3 sigma in P - bin_num += 1 - bin_map[i*grid_size:(i+1)*grid_size,j*grid_size:(j+1)*grid_size] = bin_num - - return bin_map, bin_num \ No newline at end of file + return new_data_array, new_error_array, new_data_mask, new_headers \ No newline at end of file