clean up add analysis step
This commit is contained in:
@@ -20,17 +20,17 @@ from astropy.wcs import WCS
|
|||||||
def main():
|
def main():
|
||||||
##### User inputs
|
##### User inputs
|
||||||
## Input and output locations
|
## Input and output locations
|
||||||
# globals()['data_folder'] = "../data/NGC1068_x274020/"
|
globals()['data_folder'] = "../data/NGC1068_x274020/"
|
||||||
# infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
||||||
# 'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
||||||
# 'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
||||||
# psf_file = 'NGC1068_f253m00.fits'
|
psf_file = 'NGC1068_f253m00.fits'
|
||||||
# globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
||||||
|
|
||||||
globals()['data_folder'] = "../data/IC5063_x3nl030/"
|
# globals()['data_folder'] = "../data/IC5063_x3nl030/"
|
||||||
infiles = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
|
# infiles = ['x3nl0301r_c0f.fits','x3nl0302r_c0f.fits','x3nl0303r_c0f.fits']
|
||||||
psf_file = 'IC5063_f502m00.fits'
|
# psf_file = 'IC5063_f502m00.fits'
|
||||||
globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
|
# globals()['plots_folder'] = "../plots/IC5063_x3nl030/"
|
||||||
|
|
||||||
# globals()['data_folder'] = "../data/NGC1068_x14w010/"
|
# globals()['data_folder'] = "../data/NGC1068_x14w010/"
|
||||||
# infiles = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
|
# infiles = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
|
||||||
@@ -113,7 +113,7 @@ def main():
|
|||||||
display_data = False
|
display_data = False
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||||
smoothing_FWHM = 0.20 #If None, no smoothing is done
|
smoothing_FWHM = 0.10 #If None, no smoothing is done
|
||||||
smoothing_scale = 'arcsec' #pixel or arcsec
|
smoothing_scale = 'arcsec' #pixel or arcsec
|
||||||
# Rotation
|
# Rotation
|
||||||
rotate_stokes = True #rotation to North convention can give erroneous results
|
rotate_stokes = True #rotation to North convention can give erroneous results
|
||||||
@@ -122,7 +122,7 @@ def main():
|
|||||||
crop = False #Crop to desired ROI
|
crop = False #Crop to desired ROI
|
||||||
final_display = False
|
final_display = False
|
||||||
# Polarization map output
|
# Polarization map output
|
||||||
figname = 'IC5063_FOC' #target/intrument name
|
figname = 'NGC1068_FOC' #target/intrument name
|
||||||
figtype = '_combine_FWHM020' #additionnal informations
|
figtype = '_combine_FWHM020' #additionnal informations
|
||||||
SNRp_cut = 5. #P measurments with SNR>3
|
SNRp_cut = 5. #P measurments with SNR>3
|
||||||
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
@@ -133,55 +133,40 @@ def main():
|
|||||||
## Step 1:
|
## Step 1:
|
||||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||||
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
||||||
|
|
||||||
# Crop data to remove outside blank margins.
|
# Crop data to remove outside blank margins.
|
||||||
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
|
data_array, error_array, headers = proj_red.crop_array(data_array, headers, step=5, null_val=0., inside=True, display=display_crop, savename=figname, plots_folder=plots_folder)
|
||||||
|
|
||||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||||
if deconvolve:
|
if deconvolve:
|
||||||
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
|
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations, algo=algo)
|
||||||
Dxy = np.ones(2)*10
|
|
||||||
data_mask = np.ones(data_array.shape[1:]).astype(bool)
|
|
||||||
# Align and rescale images with oversampling.
|
|
||||||
if px_scale.lower() not in ['full','integrate']:
|
|
||||||
data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, upsample_factor=int(Dxy.min()), ref_center=align_center, return_shifts=False)
|
|
||||||
im = plt.imshow(error_array[0]/data_array[0]*100, origin='lower', vmin=0, vmax=100)
|
|
||||||
plt.colorbar(im)
|
|
||||||
wcs = WCS(headers[0])
|
|
||||||
plt.plot(*wcs.wcs.crpix,'r+')
|
|
||||||
plt.title("Align error")
|
|
||||||
plt.show()
|
|
||||||
# Rotate data to have North up
|
# Rotate data to have North up
|
||||||
ref_header = deepcopy(headers[0])
|
|
||||||
if rotate_data:
|
if rotate_data:
|
||||||
alpha = ref_header['orientat']
|
data_mask = np.ones(data_array.shape[1:]).astype(bool)
|
||||||
|
alpha = headers[0]['orientat']
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||||
data_array, error_array, headers, data_mask = proj_red.rotate_data(data_array, error_array, data_mask, headers, -ref_header['orientat'])
|
data_array, error_array, headers, data_mask = proj_red.rotate_data(data_array, error_array, data_mask, headers, -alpha)
|
||||||
im = plt.imshow(error_array[0]/data_array[0]*100, origin='lower', vmin=0, vmax=100)
|
|
||||||
plt.colorbar(im)
|
# Align and rescale images with oversampling.
|
||||||
wcs = WCS(headers[0])
|
data_array, error_array, headers, data_mask = proj_red.align_data(data_array, headers, error_array=error_array, upsample_factor=10, ref_center=align_center, return_shifts=False)
|
||||||
plt.plot(*wcs.wcs.crpix,'r+')
|
|
||||||
plt.title("Rotate error")
|
|
||||||
plt.show()
|
|
||||||
# Rebin data to desired pixel size.
|
# Rebin data to desired pixel size.
|
||||||
if rebin:
|
if rebin:
|
||||||
|
if px_scale.lower() in ['full','integrate']:
|
||||||
|
data_array, error_array, headers = proj_red.get_error(data_array, headers, error_array, data_mask, sub_shape=error_sub_shape, display=display_error, savename=figname+"_errors", plots_folder=plots_folder)
|
||||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
|
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation, data_mask=data_mask)
|
||||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
|
||||||
data_array, error_array, headers = proj_red.get_error(data_array, headers, error_array, data_mask, sub_shape=error_sub_shape, display=display_error, savename=figname+"_errors", plots_folder=plots_folder)
|
|
||||||
im = plt.imshow(error_array[0]/data_array[0]*100, origin='lower', vmin=0, vmax=100)
|
|
||||||
plt.colorbar(im)
|
|
||||||
wcs = WCS(headers[0])
|
|
||||||
plt.plot(*wcs.wcs.crpix,'r+')
|
|
||||||
plt.title("Background error")
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||||
if px_scale.lower() not in ['full','integrate']:
|
if px_scale.lower() not in ['full','integrate']:
|
||||||
vertex = image_hull(data_mask,step=5,null_val=0.,inside=True)
|
data_array, error_array, headers = proj_red.get_error(data_array, headers, error_array, data_mask, sub_shape=error_sub_shape, display=display_error, savename=figname+"_errors", plots_folder=plots_folder)
|
||||||
else:
|
|
||||||
vertex = np.array([0.,0.,data_array.shape[2],data_array.shape[2]])
|
|
||||||
shape = np.array([vertex[1]-vertex[0],vertex[3]-vertex[2]])
|
|
||||||
rectangle = [vertex[2], vertex[0], shape[1], shape[0], 0., 'g']
|
|
||||||
|
|
||||||
#Plot array for checking output
|
#Plot array for checking output
|
||||||
if display_data:
|
if display_data and px_scale.lower() not in ['full','integrate']:
|
||||||
|
vertex = image_hull(data_mask,step=5,null_val=0.,inside=True)
|
||||||
|
shape = np.array([vertex[1]-vertex[0],vertex[3]-vertex[2]])
|
||||||
|
rectangle = [vertex[2], vertex[0], shape[1], shape[0], 0., 'g']
|
||||||
|
|
||||||
proj_plots.plot_obs(data_array, headers, vmin=data_array.min(), vmax=data_array.max(), rectangle =[rectangle,]*data_array.shape[0], savename=figname+"_center_"+align_center, plots_folder=plots_folder)
|
proj_plots.plot_obs(data_array, headers, vmin=data_array.min(), vmax=data_array.max(), rectangle =[rectangle,]*data_array.shape[0], savename=figname+"_center_"+align_center, plots_folder=plots_folder)
|
||||||
|
|
||||||
## Step 2:
|
## Step 2:
|
||||||
@@ -192,29 +177,11 @@ def main():
|
|||||||
# Bibcode : 1995chst.conf...10J
|
# Bibcode : 1995chst.conf...10J
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
||||||
|
|
||||||
im = plt.imshow(np.sqrt(Stokes_cov[0,0])/I_stokes*100, origin='lower', vmin=0, vmax=100)
|
|
||||||
plt.colorbar(im)
|
|
||||||
wcs = WCS(headers[0])
|
|
||||||
plt.plot(*wcs.wcs.crpix,'r+')
|
|
||||||
plt.title("Stokes error")
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
## Step 3:
|
## Step 3:
|
||||||
# Rotate images to have North up
|
# Rotate images to have North up
|
||||||
ref_header = deepcopy(headers[0])
|
|
||||||
if rotate_stokes:
|
if rotate_stokes:
|
||||||
alpha = ref_header['orientat']
|
alpha = headers[0]['orientat']
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, data_mask = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, -alpha, SNRi_cut=None)
|
||||||
[np.sin(-alpha), np.cos(-alpha)]])
|
|
||||||
rectangle[0:2] = np.dot(mrot, np.asarray(rectangle[0:2]))+np.array(data_array.shape[1:])/2
|
|
||||||
rectangle[4] = alpha
|
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, data_mask = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, -ref_header['orientat'], SNRi_cut=None)
|
|
||||||
im = plt.imshow(np.sqrt(Stokes_cov[0,0])/I_stokes*100, origin='lower', vmin=0, vmax=100)
|
|
||||||
plt.colorbar(im)
|
|
||||||
wcs = WCS(headers[0])
|
|
||||||
plt.plot(*wcs.wcs.crpix,'r+')
|
|
||||||
plt.title("Rotate Stokes error")
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
||||||
@@ -235,15 +202,17 @@ def main():
|
|||||||
|
|
||||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
if px_scale.lower() not in ['full','integrate'] and final_display:
|
if px_scale.lower() not in ['full','integrate'] and final_display:
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display=None)
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display=None)
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_flux", plots_folder=plots_folder, display='Pol_Flux')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_flux", plots_folder=plots_folder, display='Pol_Flux')
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg')
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_I_err", plots_folder=plots_folder, display='I_err')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_I_err", plots_folder=plots_folder, display='I_err')
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err')
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRi", plots_folder=plots_folder, display='SNRi')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRi", plots_folder=plots_folder, display='SNRi')
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRp", plots_folder=plots_folder, display='SNRp')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRp", plots_folder=plots_folder, display='SNRp')
|
||||||
elif final_display:
|
elif final_display:
|
||||||
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display='default')
|
proj_plots.polarization_map(deepcopy(Stokes_test), data_mask, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display='default')
|
||||||
|
elif px_scale.lower() not in ['full', 'integrate']:
|
||||||
|
pol_map = proj_plots.pol_map(Stokes_test, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut)
|
||||||
|
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
|||||||
@@ -3,8 +3,8 @@ from getopt import getopt, error as get_error
|
|||||||
from sys import argv
|
from sys import argv
|
||||||
|
|
||||||
arglist = argv[1:]
|
arglist = argv[1:]
|
||||||
options = "hf:p:i:o:"
|
options = "hf:p:i:"
|
||||||
long_options = ["help","fits=","snrp=","snri=","output="]
|
long_options = ["help","fits=","snrp=","snri="]
|
||||||
|
|
||||||
fits_path = None
|
fits_path = None
|
||||||
SNRp_cut, SNRi_cut = 3, 30
|
SNRp_cut, SNRi_cut = 3, 30
|
||||||
@@ -15,15 +15,13 @@ try:
|
|||||||
|
|
||||||
for curr_arg, curr_val in arg:
|
for curr_arg, curr_val in arg:
|
||||||
if curr_arg in ("-h", "--help"):
|
if curr_arg in ("-h", "--help"):
|
||||||
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut> -o <path_to_output_txt>")
|
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut>")
|
||||||
elif curr_arg in ("-f", "--fits"):
|
elif curr_arg in ("-f", "--fits"):
|
||||||
fits_path = str(curr_val)
|
fits_path = str(curr_val)
|
||||||
elif curr_arg in ("-p", "--snrp"):
|
elif curr_arg in ("-p", "--snrp"):
|
||||||
SNRp_cut = int(curr_val)
|
SNRp_cut = int(curr_val)
|
||||||
elif curr_arg in ("-i", "--snri"):
|
elif curr_arg in ("-i", "--snri"):
|
||||||
SNRi_cut = int(curr_val)
|
SNRi_cut = int(curr_val)
|
||||||
elif curr_arg in ("-o", "--output"):
|
|
||||||
out_txt = str(curr_val)
|
|
||||||
except get_error as err:
|
except get_error as err:
|
||||||
print(str(err))
|
print(str(err))
|
||||||
|
|
||||||
@@ -34,29 +32,5 @@ if not fits_path is None:
|
|||||||
Stokes_UV = fits.open(fits_path)
|
Stokes_UV = fits.open(fits_path)
|
||||||
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut)
|
p = pol_map(Stokes_UV, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut)
|
||||||
|
|
||||||
if not out_txt is None:
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
conv = p.Stokes[0].header['photflam']
|
|
||||||
I = p.Stokes[0].data*conv
|
|
||||||
Q = p.Stokes[1].data*conv
|
|
||||||
U = p.Stokes[2].data*conv
|
|
||||||
P = np.zeros(I.shape)
|
|
||||||
P[p.cut] = p.Stokes[5].data[p.cut]
|
|
||||||
PA = np.zeros(I.shape)
|
|
||||||
PA[p.cut] = p.Stokes[8].data[p.cut]
|
|
||||||
|
|
||||||
shape = np.array(I.shape)
|
|
||||||
center = (shape/2).astype(int)
|
|
||||||
cdelt_arcsec = p.wcs.wcs.cdelt*3600
|
|
||||||
xx, yy = np.indices(shape)
|
|
||||||
x, y = (xx-center[0])*cdelt_arcsec[0], (yy-center[1])*cdelt_arcsec[1]
|
|
||||||
|
|
||||||
data_list = []
|
|
||||||
for i in range(shape[0]):
|
|
||||||
for j in range(shape[1]):
|
|
||||||
data_list.append([x[i,j], y[i,j], I[i,j], Q[i,j], U[i,j], P[i,j], PA[i,j]])
|
|
||||||
data = np.array(data_list)
|
|
||||||
np.savetxt(out_txt,data)
|
|
||||||
else:
|
else:
|
||||||
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut> -o <path_to_output_txt>")
|
print("python3 analysis.py -f <path_to_reduced_fits> -p <SNRp_cut> -i <SNRi_cut>")
|
||||||
|
|||||||
@@ -996,6 +996,8 @@ class pol_map(object):
|
|||||||
"""
|
"""
|
||||||
def __init__(self,Stokes, SNRp_cut=3., SNRi_cut=30., selection=None):
|
def __init__(self,Stokes, SNRp_cut=3., SNRi_cut=30., selection=None):
|
||||||
|
|
||||||
|
if type(Stokes) == str:
|
||||||
|
Stokes = fits.open(Stokes)
|
||||||
self.Stokes = deepcopy(Stokes)
|
self.Stokes = deepcopy(Stokes)
|
||||||
self.SNRp_cut = SNRp_cut
|
self.SNRp_cut = SNRp_cut
|
||||||
self.SNRi_cut = SNRi_cut
|
self.SNRi_cut = SNRi_cut
|
||||||
|
|||||||
Reference in New Issue
Block a user