Latest data products (.c0f) are already transmition corrected, remove correction by default

This commit is contained in:
Tibeuleu
2022-11-14 10:44:51 +01:00
parent 47f0ead97c
commit 973afe9217
49 changed files with 50 additions and 44 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 542 KiB

After

Width:  |  Height:  |  Size: 536 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 698 KiB

After

Width:  |  Height:  |  Size: 694 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 413 KiB

After

Width:  |  Height:  |  Size: 408 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 461 KiB

After

Width:  |  Height:  |  Size: 454 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 578 KiB

After

Width:  |  Height:  |  Size: 574 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 155 KiB

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 540 KiB

After

Width:  |  Height:  |  Size: 533 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 198 KiB

After

Width:  |  Height:  |  Size: 197 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 166 KiB

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 172 KiB

After

Width:  |  Height:  |  Size: 172 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 174 KiB

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 203 KiB

After

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 737 KiB

After

Width:  |  Height:  |  Size: 731 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 349 KiB

After

Width:  |  Height:  |  Size: 348 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 460 KiB

After

Width:  |  Height:  |  Size: 343 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 MiB

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 168 KiB

After

Width:  |  Height:  |  Size: 168 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 358 KiB

After

Width:  |  Height:  |  Size: 342 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 292 KiB

After

Width:  |  Height:  |  Size: 276 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 276 KiB

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 269 KiB

After

Width:  |  Height:  |  Size: 265 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 330 KiB

After

Width:  |  Height:  |  Size: 309 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 301 KiB

After

Width:  |  Height:  |  Size: 290 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 526 KiB

After

Width:  |  Height:  |  Size: 524 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 561 KiB

After

Width:  |  Height:  |  Size: 643 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 391 KiB

After

Width:  |  Height:  |  Size: 380 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 296 KiB

After

Width:  |  Height:  |  Size: 289 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 274 KiB

After

Width:  |  Height:  |  Size: 270 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 274 KiB

After

Width:  |  Height:  |  Size: 269 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 KiB

After

Width:  |  Height:  |  Size: 277 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 324 KiB

After

Width:  |  Height:  |  Size: 324 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 494 KiB

After

Width:  |  Height:  |  Size: 512 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 522 KiB

After

Width:  |  Height:  |  Size: 594 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 515 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 503 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 486 KiB

After

Width:  |  Height:  |  Size: 485 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 496 KiB

After

Width:  |  Height:  |  Size: 495 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 477 KiB

After

Width:  |  Height:  |  Size: 475 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 498 KiB

After

Width:  |  Height:  |  Size: 496 KiB

View File

@@ -128,25 +128,25 @@ def main():
# Data binning
rebin = True
if rebin:
pxsize = 0.10
px_scale = 'arcsec' #pixel, arcsec or full
pxsize = 10
px_scale = 'pixel' #pixel, arcsec or full
rebin_operation = 'sum' #sum or average
# Alignement
align_center = 'image' #If None will align image to image center
display_data = False
# Smoothing
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
smoothing_FWHM = 0.20 #If None, no smoothing is done
smoothing_FWHM = None #If None, no smoothing is done
smoothing_scale = 'arcsec' #pixel or arcsec
# Rotation
rotate_stokes = True #rotation to North convention can give erroneous results
rotate_data = False #rotation to North convention can give erroneous results
# Final crop
crop = False #Crop to desired ROI
final_display = True
final_display = False
# Polarization map output
figname = 'NGC1068_FOC' #target/intrument name
figtype = '_combine_FWHM020' #additionnal informations
figtype = '_bin10px' #additionnal informations
SNRp_cut = 5. #P measurments with SNR>3
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
@@ -197,7 +197,7 @@ def main():
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function,transmitcorr=False)
## Step 3:
# Rotate images to have North up

View File

@@ -65,9 +65,9 @@ ax = fig.add_subplot(111, projection=wcs)
fig.subplots_adjust(right=0.85)
cbar_ax = fig.add_axes([0.88, 0.12, 0.01, 0.75])
#im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline")
im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline")
#im0 = ax.imshow(data_K['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through Kishimoto's pipeline")
im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline")
#im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline")
#im0 = ax.imshow(data_K['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through Kishimoto's pipeline")
#im0 = ax.imshow(data_S['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through this pipeline")
quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='b',alpha=0.75, label="PA through this pipeline")
@@ -83,8 +83,8 @@ ax.coords[1].set_axislabel_position('l')
ax.coords[1].set_ticklabel_position('l')
#ax.axis('equal')
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$P$ [%]")
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$P$ [%]")
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$\theta_P$ [°]")
plt.rcParams.update({'font.size': 15})
ax.legend(loc='upper right')

View File

@@ -1891,15 +1891,15 @@ class pol_map(object):
ax = self.ax
if hasattr(self, 'an_int'):
self.an_int.remove()
#self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.93), xycoords='axes fraction')
self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.85), xycoords='axes fraction')
self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.93), xycoords='axes fraction')
#self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.85), xycoords='axes fraction')
if not self.region is None:
self.cont = ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
fig.canvas.draw_idle()
return self.an_int
else:
#ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.94), xycoords='axes fraction')
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.90), xycoords='axes fraction')
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.94), xycoords='axes fraction')
#ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.90), xycoords='axes fraction')
if not self.region is None:
ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
fig.canvas.draw_idle()

View File

@@ -1138,7 +1138,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
def compute_Stokes(data_array, error_array, data_mask, headers,
FWHM=None, scale='pixel', smoothing='gaussian_after'):
FWHM=None, scale='pixel', smoothing='gaussian_after', transmitcorr=False):
"""
Compute the Stokes parameters I, Q and U for a given data_set
----------
@@ -1170,6 +1170,11 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
-'gaussian_after' convolve output Stokes I/Q/U with a gaussian of
standard deviation stdev = FWHM/(2*sqrt(2*log(2))).
Defaults to 'gaussian_after'. Won't be used if FWHM is None.
transmitcorr : bool, optional
Weither the images should be transmittance corrected for each filter
along the line of sight. Latest calibrated data products (.c0f) does
not require such correction.
Defaults to False.
----------
Returns:
I_stokes : numpy.ndarray
@@ -1219,7 +1224,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
transmit2 = np.min([trans2[header['filtnam2'].lower()] for header in headers])
transmit3 = np.min([trans3[header['filtnam3'].lower()] for header in headers])
transmit4 = np.min([trans4[header['filtnam4'].lower()] for header in headers])
transmit *= transmit2*transmit3*transmit4
if transmitcorr:
transmit *= transmit2*transmit3*transmit4
pol_eff = np.array([pol_efficiency['pol0'], pol_efficiency['pol60'], pol_efficiency['pol120']])
#Calculating correction factor

View File

@@ -7,37 +7,37 @@ from lib.plots import overplot_radio, overplot_pol, align_pol
from matplotlib.colors import LogNorm
Stokes_UV = fits.open("../data/IC5063_x3nl030/IC5063_FOC_combine_FWHM020.fits")
#Stokes_18GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.18GHz.fits")
#Stokes_24GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.24GHz.fits")
#Stokes_103GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_103GHz.fits")
#Stokes_229GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_229GHz.fits")
#Stokes_357GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_357GHz.fits")
Stokes_18GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.18GHz.fits")
Stokes_24GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.24GHz.fits")
Stokes_103GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_103GHz.fits")
Stokes_229GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_229GHz.fits")
Stokes_357GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_357GHz.fits")
#Stokes_S2 = fits.open("../data/IC5063_x3nl030/POLARIZATION_COMPARISON/S2_rot_crop.fits")
Stokes_IR = fits.open("../data/IC5063_x3nl030/IR/u2e65g01t_c0f_rot.fits")
#levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
#
##levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
#levels18GHz = levelsMorganti*0.28*1e-3
#A = overplot_radio(Stokes_UV, Stokes_18GHz)
#A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
#
##levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
#levels24GHz = levelsMorganti*0.46*1e-3
#B = overplot_radio(Stokes_UV, Stokes_24GHz)
#B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
#
#levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
#C = overplot_radio(Stokes_UV, Stokes_103GHz)
#C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
#
#levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
#D = overplot_radio(Stokes_UV, Stokes_229GHz)
#D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
#
#levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
#E = overplot_radio(Stokes_UV, Stokes_357GHz)
#E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
#levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
levels18GHz = levelsMorganti*0.28*1e-3
A = overplot_radio(Stokes_UV, Stokes_18GHz)
A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
#levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
levels24GHz = levelsMorganti*0.46*1e-3
B = overplot_radio(Stokes_UV, Stokes_24GHz)
B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
C = overplot_radio(Stokes_UV, Stokes_103GHz)
C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
D = overplot_radio(Stokes_UV, Stokes_229GHz)
D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
E = overplot_radio(Stokes_UV, Stokes_357GHz)
E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
#F = overplot_pol(Stokes_UV, Stokes_S2)
#F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/S2_overplot_forced.png', norm=LogNorm(vmin=5e-20,vmax=5e-18))